
© Stephen James

Page 1 of 52

 INVESTIGATIONS INTO COMPLEXITY
A SURVEY OF POPULATION DYNAMICS IN CELLULAR AUTOMATA

Dissertation

Evolutionary and Adaptive Systems Msc

Department of Informatics - University of Sussex – Brighton - United Kingdom

Abstract

In the report Looking for Life (James 2005) the concept of Population Dynamics was introduced as a

means of finding interesting and complex behaviours within Cellular Automata (CA); this paper aims

to redefine these measures so as to represent a formal methodology for all CA analysis. Based on

these dynamics, a number of general observations shall be highlighted, with particular attention being

given to the contrasts between ordered, chaotic and complex behaviours. These contrasts shall then

be further examined by a new method of probabilistic analysis wherein a more solid mathematical

notion of ordered and chaotic behaviour shall be proffered and a clearer understanding of complex

behaviour is proposed. Finally, it is hoped that these clearer definitions of complexity within cellular

automata may assist in grounding the more general term used throughout the interdisciplinary

Sciences of Complexity.

© Stephen James

Page 2 of 52

1 ACKNOWLEDGEMENTS .. 3
2 INTRODUCTION .. 4

2.1 CELLULAR AUTOMATA AND THE SCIENCE OF COMPLEXITY.. 5
2.2 PREVIOUS WORK IN LOOKING FOR LIFE... 7

3 DEFINING POPULATION DYNAMICS.. 8
3.1 LIFE AND DEATH - A NATURAL BISECTION... 8
3.2 BIRTH AND DEATH – ADDING A MEASURE OF CHANGE .. 9
3.3 POPULATION DYNAMIC DEMOGRAPHICS .. 10
3.4 INTRODUCING THE CATS TOOLSET.. 10

4 OBSERVING POPULATION DYNAMICS... 11
4.1 INTRODUCING CA EXAMPLES... 11
4.2 POPULATION DYNAMIC GRAPHS FOR CA EXAMPLES .. 13
4.3 THE ATTRACTION OF BIRTH AND DEATH.. 14
4.4 SETTLING DOWN TO BEHAVIOURAL STABILITY .. 14
4.5 CONTRASTS BETWEEN ORDER AND CHAOS .. 15
4.6 COMPLEXITY AND THE LACK OF BEHAVIOURAL STABILITY.. 16
4.7 POPULATION DYNAMICS AND ENTROPY VARIANCE .. 17

5 FOURIER ANALYSIS OF POPULATION DYNAMICS 18
5.1 FREQUENCY MEASURES AND TIMEWINDOWS... 18
5.2 POWER/FREQUENCY GRAPHS FOR CA EXAMPLES .. 19
5.3 CLASSIFYING BEHAVIOUR THROUGH POWER DISTRIBUTION... 20
5.4 THE UBIQUITY OF 1/FB NOISE .. 20
5.5 UNDERSTANDING 1/FB NOISE .. 22
5.6 COMPLEXITY AND GRADIENTS .. 24

6 PROBABILISTIC ANALYSIS OF POPULATION DYNAMICS............................. 25
6.1 THE PROBABILITY OF LIFE .. 25
6.2 THE PROBABILITY OF BABIES AND CORPSES... 27
6.3 HOW TO PLOT THE DYNAMICS ... 28
6.4 PROBABLE DYNAMICS GRAPHS FOR CA EXAMPLES.. 28
6.5 POPULATION ATTRACTORS OF ORDER AND CHAOS.. 30
6.6 SETTLING DOWN ... 31
6.7 BIRTH AND DEATH ... 32
6.8 COMPLEXITY WITHIN PROBABILITY DYNAMICS... 33
6.9 CLASSIFICATION THROUGH PROBABILITY DYNAMICS ... 35

7 CONCLUSIONS .. 36
7.1 REFINED DEFINITIONS OF COMPLEXITY... 36

8 PROPOSITIONS... 38
8.1 A MEASURE OF IMPROBABILITY .. 38
8.2 APPLICATIONS FOR THE MATHEMATICAL METHODS .. 38
8.3 LIFE FAR FROM EQUILIBRIUM .. 39

9 REFERENCES ... 40
APPENDIX A: CA RULETABLES .. 42
APPENDIX B: CATS SCREEN SHOTS .. 44
APPENDIX C: SOURCE CODE ... 46

© Stephen James

Page 3 of 52

1 ACKNOWLEDGEMENTS

My sincere thanks go to Dr. Inman Harvey for his supervision, support and welcomed advice during

the writing of this paper. I would also like to thank Dr. Andy Wuensche for his valuable

encouragement, expertise and input into many of my findings and to Dr. Ron Chrisley for his

probability knowledge at my most crucial hour. Finally thanks must go to my illustrious colleague

James Carter (Douglas), and to my dearest friend and fiancée Sheryl.

© Stephen James

Page 4 of 52

2 INTRODUCTION

From the molecules to the stars, the natural world is awash with complex systems. They are our cells,

our bodies, our societies and our minds. They are the whole, which is so often so much greater than

the sum of its parts.

For thousands of years, man has grappled to understand how it is that we are both part and whole;

how it is that our cells, together and alone, create our bodies and our souls.

For the most part, science has been dismantling the world with a reductionistic axe; redefining the

whole to be nothing more than the atomic interplay of its constituent parts. But this paradigm is,

fortunately, beginning to shift (Capra 1996, Davies 2003). New systems sciences (Van Bertalanffy

1969) are finally starting to study global properties and behaviours (or wholes) as classifiable

phenomena and are trying and work out which of these behaviours arise under which systemic

conditions (Lorenz 1963, Prigogine 1967, Mandelbrot 1977, Feigenbaum 1978).

Complexity Science, in particular, is actively studying the forces that give rise to adaptive,

computational or just plain interesting behaviour found within complex dynamical networks. Its aim is

to bridge the gap between the macroscopic behaviours of the whole and the microscopic dynamics of

the parts (Kauffman 1993, Langton 1989, Wuensche 1996); a question that is pertinent to all complex

systems whether biological, psychological, economical or social.

This paper aims to join this endeavour, and shall do so from the perspective of one of the core

modelling techniques used within the science of complexity; the wonderful world of cellular automata.

In an earlier report, Looking for Life (James 2005), the concept of Population Dynamics was

introduced as a means of finding complex behaviours in cellular automata. In chapter 3 of this paper,

we aim to redefine these measures so as to represent a formal methodology for wider CA analysis.

From an analysis of these dynamics, Chapter 4 shall introduce the notion of settling down to

behavioural stability, and use this to compare and contrast the three standard classes of global

behaviour within CA (order, chaotic and complex). Chapter 5 shall then extend these observations

through frequency analysis and proffer an explaination for the ubiquitious 1/fb noise in order to bring

together the notions of settling down and complexity.

A new method of probabilistic analysis shall be introduced in chapter 6, to further study and more

clearly understand some of the observations of behavioural stability. A more solid mathematical

definition of ordered and chaotic behaviour shall be offered and a refined definition of complexity

within cellular automata shall be proposed.

Finally, we introduce a possible future measure of complexity within cellular automata and conclude

with an examination of complexity’s position within the wider, intedisciplanary sciences of systems.

First, however, it is useful to follow in some of the footsteps made by the early pioneers of this

research program, and to understand some of the history between cellular automata and the science

of complexity.

© Stephen James

Page 5 of 52

2.1 CELLULAR AUTOMATA AND THE SCIENCE OF COMPLEXITY

In the 1940’s John von Neumann grappled with the problem of self-replication (Von Neumann 1966).

Like so many of the early cybernaticians and game theorists, he wanted to use his understanding of

the new mathematics of non-linear systems to brake down some of the vitalistic barriers buried within

the study of biological systems. He aimed to devise a mathematical model for an imaginary factory

that was capable of building other factories just like itself. In looking for a framework for his idea, he

came across the work of his colleague, Stanislaw Ulam, whose crystal growth analysis was modelled

within an abstract mathematical world called a lattice network. Using such a network, Von Neumann

devised a 29-state automaton which, when placed in each cell of the lattice, was able to perform the

kind of self replication he had envisaged (Wolfram 2002).

This marvellous model was the first example of a Cellular Automata, but it didn’t attract any real

attention until 25 years later, when John Conway discovered a rather majestic set of automaton rules

known as the Game of Life. Conway, inspired by his recent mathematical success with symmetry

groups, took on the daunting task of simplifying Von Neumann’s self-replication model. “After the

rejection of many patterns… and of many other laws of birth and death, including the introduction of

two and even three sexes” he finally succeeded and found what he was looking for, “a viable balance

between life and death” (Guy & Conway 1985).

The Game of Life gained immediate acclaim due to the remarkable array of evocative patterns it

produced. A menagerie of lifelike gliders and guns could be seen interacting with each other inside a

virtual mathematical world. Many began to question how, and why these patterns came to be, and

why they didn’t exist in any of the other rulesets.

In 1984, Stephen Wolfram published a report that looked at answering some of these questions

(Wolfram 1984). By that time, cellular automata (CA) had become a well defined and widely studied

branch of mathematics. A CA was defined to be a D-dimensional lattice with a finite state automaton

placed at each site in the lattice. Each automaton could have Q distinct states and at any given time

(t) an automaton would be said to be in the specific state. Each automaton would calculate its next

state from a lookup table of rules based on the configuration of its local neighbourhood. The

automaton rule table would simply consist of a rule for each possible configuration within the N

neighbourhood template. Numerically speaking, therefore, it was found that a particular class of CA

would have)|(| ||

||
NQQ possible rulesets (Ganguly 2003).

Given that the Game of Life has 2 states and a 9 cell neighbourhood (known as the Binary Moore

configuration) it was soon realised that this ruleset was one of 10154 possibilities. So Wolfram

narrowed down the playing field by examining the smaller world of 1-dimensional CA. From the careful

analysis of this CA landscape, he declared four classifications to categorise the various global

behaviours.

Class I: Evolution leads to a homogeneous state

Class II: Evolution leads to a set of separated simple stable or periodic structures

Class III: Evolution leads to a chaotic pattern

Class IV: Evolution leads to complex localized structures, sometimes long-lived

By classifying the behavioural landscape in this way, the question immediately became “how do we

determine which rulesets will produce which of these behaviours?”

© Stephen James

Page 6 of 52

The fledgling field of Complexity Science, nestling inside the Santa Fe Institute, was first to propose

an answer. Chris Langton revised Wolfram’s classes to fit with the growing language of dynamical

systems. He regrouped class I and class II as a single class of Ordered behaviors (on the basis that a

homogeneous state is a cyclical state of period one) and he simply renamed Class III behaviors to be

Chaotic. The last, interesting set of behaviors (Class IV), he called Complex (Langton 1990).

These three classes of behavior were suggested to be analogous to the three states of matter.

Ordered behavior was analogous to the solidity of ice; chaotic behavior acted like the gaseous

randomness of steam; whilst Complexity lay somewhere in between the two, a fluid place of liquidity

and motion (Waldrop 1992, Coveney & Highfield 1995, Lewin 1993). This place became known as the

Edge of Chaos (Packard 1988).

Chris Langton devised a parameter, the lambda (λ) parameter, which he hoped would be able to

separate the three classes of behaviour (Langton 1990). He found that most rulesets with a λ above

0.2734 displayed chaotic behavior whilst most rulesets with a λ below 0.2734 displayed ordered

behavior. The Game of Life, however, lay precisely upon the the edge of the two, with a λ of precisely

0.2734.

Complexity Theorists began to propose that dynamical systems tuned to this Edge of Chaos would

possess a property known as Emergence (the process by which new forms of order could be

generated within levels higher than the level of the constituent parts of a system) (Kauffman 1993,

Holland 1998, Bickhard & Campbell 2000). Through this emergence complex patterns would persist in

nature and, through the forces of self-organisation and natural selection, would be pruned for their

adaptivity (Cariani 1990, Morowitz 2002).

However, complexity was not going to be so readily simplified. James Crutchfield and Melanie Mitchell

have subsequently shown that the λ parameter is inadequate as a classification scheme (Mitchell,

Hraber and Crutchfield 1993). It has been shown that evolution does NOT favour this mystical arena

and that there are, in fact, a vast array of ordered CAs with a λ greater that 0.2734 just as there are a

vast array of chaotic CAs with a λ of less that it. The edge of chaos, although a wonderfully evocative

metaphor, is unfortunately just that.

Regretably, this has left Complexity Science a little bereft of its foundations and for the principles of

emergence to continue a more solid concept of complexity is required. Although the reclassification of

cellular automata into ordered, chaotic and complex seems justifiable, the landmarks and explanations

for this classification are missing. The original questions posed by the existence of the Game of Life

remain unanswered and a suitable understanding of emergent phenomena remains a mystery.

A dedicated few, however, have kept hold of the tail of this mystery. Andy Wuensche has proposed

Entropy Variance as a suitable classification scheme, distinguishing chaotic and ordered systems by

means of their respective high and low entropies (Wuensche 1996). So too, Shigera Ninagawa has

expressed 1/fb noise as a unique tell-tale signature of complexity in CAs and has gone on to find other

rulesets showing complex behaviour using this signature (Ninagawa 1998, Ninagawa 2005). More

recently however, within a short report entitled Looking for Life (James 2005), an alternative route to

the problem has been opened up; and it is this route that shall be followed within this report.

© Stephen James

Page 7 of 52

2.2 PREVIOUS WORK IN LOOKING FOR LIFE

Looking for Life (James 2005) tentatively introduced a new series of population measures which were

able to distinguish between chaotic and ordered systems and, importantly, could highlight the

complex behaviour of the Game of Life.

Although poorly understood at the time, these observations were used to create a basic Genetic

Algorithm which was able to adequately search the Binary Moore landscape looking for other rulesets

that fit this profile of complexity. The results were very promising.

A series of rulesets were discovered which displayed complex emergent phenomena similar to, and in

some cases beyond, those found in the Game of Life. Self-replicators and gliders were found in

abundance, and in many shapes and sizes, throughout the massive rule-space.

The remainder of this paper aims to expand upon the work started within this report, with the hope of

providing a greater understanding of complexity within CAs; but before proceeding, it is necessary to

adapt and redefine the measuring techniques outlined to introduce a more formal set of measures

called, the Population Dynamics of CA.

© Stephen James

Page 8 of 52

3 DEFINING POPULATION DYNAMICS

The following chapter aims to redefine the population measures outlined in Looking for Life in order to

establish a more formal framework for CA measurement. This framework has been called the

Population Dynamics of CA.

3.1 LIFE AND DEATH - A NATURAL BISECTION

First, it is important to make explicit a subtle shift in perspective in these new measures. Rather than

looking at the standard world of “cell states”, we shall instead view CA behaviours from the binary

domain of “cell existence".

Chris Langton made a similar shift during his formal definitions of the Lambda parameter wherest he

defines the bisection between “quiescent” and “non-quiescent” cell states. A “quiescent” state is

described as a kind of background state upon which the “non-quiescent” states perform their complex

behaviour. In the Game of Life, for example, one colour (state zero) acts as a background upon which

a second colour (state one) forms gliders, guns and blinkers.

Indeed, it appears that this natural bisection is quite common, although often non-explicit, within CA

research, especially when considering multi-state CAs.

As an illustration, figure 3.1 shows two example multi-state CAs. Both contain a distinct background

colour upon which all complex behaviour can be observed. In fact, it can also be seen that the bodies

of gliders, guns and other phenomena can contain many different colours (states) but that the identity

of these emergent agents is observed purely by their relation to the background state (observed by

examining the facsimile image in figure 3.1).

Multi-state complexity found by Andy Wuensche Multi-state complexity found by Steve James

(Figure 3.1) The natural bisection found in 3-state and 4-state CAs

It is this observation which takes us away from cell state space and into the subtly different domain of

cell existence. More formally, we declare that each cell in any CA (of any number of states) has a

binary classification of either “alive” (non-quiescent) or “dead” (quiescent).

Total cells (X) - the total number of cells within the CA lattice

Alive cells (At) - the number of “alive” (non quiescent) cells at time (t)

Dead cells (Dt) - the number of “dead” (quiescent) cells at time (t)

tt DAX += (3.1)

From this binary perspective we can begin to include the further notions of change and time.

© Stephen James

Page 9 of 52

3.2 BIRTH AND DEATH – ADDING A MEASURE OF CHANGE

The data available for measurement in a CA has traditionally been considered in discrete snapshots.

For example, the simple CA in figure 3.2 (at timestep 2) can be measured from the “cell state”

perspective as containing 21 white cells, 2 green cells, 1 blue cell and 1 red cell (so providing 4

measurements of data). Similarly, if considered from the “cell existence” perspective, the CA can be

said to contain 21 dead cells and 4 alive cells (so providing 2 measurements).

Timestep 1

Timestep 2

Timestep 1

Timestep 2

Cell state space Cell existence space

(Figure 3.2) Snapshots of information within a CA

However, there is another measurement hidden between the consecutive timesteps that has, up until

now, gone unnoticed; the notion of change. (Figure 3.3 highlights this information by placing a cross

inside the cells which have changed between the two timesteps)

Timestep 1

Timestep 2

 x
 x x
 x x

Timestep 1

Timestep 2

 x

 x x

Cell state space Cell existence space

(Figure 3.3) Adding the notion of change to informational snapshots within a CA

From the domain of “cell existence”, these crosses are extremely interesting as they introduce the

concepts of “becoming alive” and “becoming dead” to our arsenal of measurements. For example, in

figure 3.3, we can now say that 2 cells have “been born” and 1 cell has “died”.

However, in the domain of cell state space, these crosses are far less meaningful. Consider the similar

concept of “becomes green”; because this may refer to a white, blue or red cell becoming green the

concept is very broad and of little general use. Potentially, you may want to create a series of distinct

concepts such as “white becomes green” but this would require Q2-Q such concepts for a Q-state CA

and these would only be of use for that particular class of CA.

One of the key advantages of the domain of “cell existence” is that these notions of change are widely

comparable across all classes of CA and may even prove a useful measure for comparison amongst

the wider community of dynamic systems in general.

To conclude, we can more formally define the notions of change as:-

Babies (Bt) - the number “alive” cells at time (t) which were “dead” at time (t-1)

Corpses (Ct) - the number “dead” cells at time (t) which were “alive” at time (t-1)

Stay Alives (SAt) - the number “alive” cells at time (t) which were also “alive” at time (t-1)

Stay Deads (SDt) - the number “dead” cells at time (t) which were also “dead” at time (t-1)

© Stephen James

Page 10 of 52

3.3 POPULATION DYNAMIC DEMOGRAPHICS

As shall be seen later in this paper, normalising these measures to make them proportional with

respect to the overall size of the CA is essential for the sensible cross referencing of statistical data. As

such we outline the four main statistical measures that shall be used below:-

POPULATION RATE

at = At / X proportion of alive cells at time (t)

dt = Dt / X proportion of dead cells at time (t)

BIRTH RATE

bt = Bt / X proportion of cells which were “dead” at time (t) but “alive” at time (t-1)

DEATH RATE

ct = Ct / X proportion of cells which were “alive” at time (t) but “dead” at time (t-1)

3.4 INTRODUCING THE CATS TOOLSET

As already stated, the primary concern of this paper lies with the observations and conclusions that

are drawn from the measurement and analysis of Population Dynamics within CA. In order to perform

this study a series of tools was created which would allow for the creation and running of a number of

CAs and for the measurement and analysis of their respective dynamics from the perspective of time,

frequency and probability. These tools have become collectively known as the Cellular Automata

Testing System (CATS).

In is not the intention of this paper to go into any detail regarding the specific design decisions and

coding techniques of the CATS systems; however a full list of the MATLab functions implemented is

provided within Appendix C. Screenshots and results from the software will be used throughout the

paper, but figure 3.4 below shows the main screens created and used (Appendix B also contains

further details for each screen).

(Figure 3.4) An example of some of the CATS screens

© Stephen James

Page 11 of 52

4 OBSERVING POPULATION DYNAMICS

Having made a clear set of definitions for Population Dynamics in cellular automata, this chapter aims

to outline how these dynamics are played out within an example set of cellular automata.

4.1 INTRODUCING CA EXAMPLES

We begin with a quick introduction of these example CA rulesets; the true nature of which can only

really be appreciated by watching the dynamic evolution of their behaviour. In reducing this behaviour

to two dimensional “snap-shots” most of the important features are lost and so a brief paragraph

describing how each one evolves should help to enhance the readers understanding of some of the

later observations and discussions.

All of our examples shall be 2-dimensional Moore neighbourhood CAs and the “snap shots” provided

show dead cells as BLACK and alive cells as WHITE. Appendix A contains the full ruletable for each

example ruleset.

RULE 1: ORDERED: WITH A SLOW DECAY

t=1

t=10

t=20

t=30

(Figure 4.1) Snap shots of CA Rule 1, taken every 10 timesteps

The randomly distributed initial population slowly dissolves, into smaller and smaller pockets of activity. After about

20 timesteps all such activity has completely stopped leaving only a handful of simple blinkers and fixed blocks.

RULE 2: ORDERED: WITH A QUICK DECAY

t=1

t=10

t=20

t=30

(Figure 4.2) Snap shots of CA Rule 1, taken every 10 timesteps

The initial population quickly dissolves (within 5 timesteps) resulting in a handful of simple blinkers and fixed blocks.

© Stephen James

Page 12 of 52

RULE 3: CHAOTIC: WITH A LOW Λ

t=1

t=10

t=20

t=30

(Figure 4.3) Snap shots of CA Rule 1, taken every 10 timesteps

A roughly constant density (approximately equal to λ) of rapidly changing noise is displayed.

RULE 4: CHAOTIC: WITH A HIGH Λ

t=1

t=10

t=20

t=30

(Figure 4.4) Snap shots of CA Rule 1, taken every 10 timesteps

As rule 3, but with a slightly higher density of alive cells maintained.

RULE 5: COMPLEX: GAME OF LIFE

t=1

t=10

t=20

t=30

(Figure 4.5) Snap shots of CA Rule 1, taken every 10 timesteps

John Conway’s famous Game of Life. A world in which gliders are surrounded by a mixture of ordered blinkers and

stable blocks as well as bubbling pockets of noisy activity.

RULE 6: COMPLEX: REPLICATING GLIDER GUNS

t=1

t=10

t=20

t=30

(Figure 4.6) Snap shots of CA Rule 1, taken every 10 timesteps

Discovered within “Looking for Life” this ruleset quickly dissolves to a near barren landscape in which growing

patterns bubble and collide occasionally spewing forth gliders in all directions.

© Stephen James

Page 13 of 52

4.2 POPULATION DYNAMIC GRAPHS FOR CA EXAMPLES

The following graphs show how the measures of Population Dynamics change over time for each of

our example CAs. All tests were performed within a lattice of 50x50 cells, and were run over 100

timesteps. The CAs were all started with a random initial density (a0) of 0.25.

Rule 1: Slow decay to order

λ

at

bt

ct

Rule 2: Quick decay to order

(Figure 4.7) Rate of change graphs for cellular automata displaying ORDERED behaviour

Rule 3: Chaos with a low λ

λ

at

bt

ct

Rule 4: Chaos with a high λ

(Figure 4.8) Rate of change graphs for cellular automata displaying CHAOTIC behaviour

Rule 3: Chaos with a low λ

λ

at

bt

ct

Rule 4: Chaos with a high λ

(Figure 4.9) Rate of change graphs for cellular automata displaying COMPLEX behaviour

© Stephen James

Page 14 of 52

4.3 THE ATTRACTION OF BIRTH AND DEATH

Our first quick, and simple, observation relates to all of the examples provided (and in fact has been

observed within all CA ever measured using these methods). In looking at figures 4.7, 4.8 and 4.9 it is

immediately apparent that the birth and death rates follow each other extremely closely throughout

the lifecycle of the cellular automata. In other words, the number of births and the number of deaths

within any cellular automata at any given moment appears to be roughly equal.

tt CB ≈ (4.1)

This fact is examined in a little more depth later in this paper, but a further analysis (beyond our

scope) may turn out to be of great benefit.

4.4 SETTLING DOWN TO BEHAVIOURAL STABILITY

In “A New Kind of Science” (Wolfram 2002), Stephen Wolfram describes a class of CA which “settles

down” to either a stable or periodic pattern of behaviour (later known to be the class of ordered CA).

This process of settling down, he claims, can be described as a kind of self-organisation for complex

systems. In contrast to this, he describes an alternative class of CAs which never “settles down” in

this way, but which instead keeps evolving in a random (chaotic) or sometimes computationally

interesting (complex) way.

This view is the generally held view within most CA research, and clearly supposes that this “settling

down” period is unique to ordered systems; with chaotic and complex systems being an opposing kind

of behaviour that “never settles down”. This view is challenged below.

Rule 1 of our examples, is described as having a “slow decay” (or settling down period) of around 20

timesteps. During this period of decay, one can describe the evolution of the CA as “looking like water

draining from a bath riddled with holes”. A world of chaos quickly becomes puddles of chaos which

eventually drain away to nothingness. Once the bath has emptied, once the settling down period has

ended, the CA is left with nothing but a handful of fixed points and blinkers.

These two distinct periods of activity (settling down and order) are clearly visible in the population

dynamic graphs given in figure 4.7; an initial period where the population measures gradually decay

towards zero (corresponding with the settling down period) followed by a period of perfect linear

stability (corresponding with the ongoing period of ordered behaviour). This is further illustrated, and

extended, in figure 4.10 which shows how the length of this settling down period can be changed by

altering the initial density of the system.

a0 = 0.02

a0 = 0.1

a0 = 0.5

(Figure 4.10) Extending the “settling down” period before ORDERED behaviour

© Stephen James

Page 15 of 52

None of this is yet out of tune with Wolfram’s observations or comments; ordered systems show a

distinctive settling down period; but what about chaotic ones?

An initial glance at the population dynamic graphs of our chaotic examples (figure 4.8) would again

seem to concur with Wolfram. There is no indicative slope in either of these graphs; in fact, the

population measures simply seem to remain in a roughly straight, but rather noisy, line.

Interestingly the initial density for both graphs was around 0.25. The first system maintains this initial

density throughout, but for some reason (discussed later) the second system seems to “bump this up

a bit” to maintain a straight line of noise at around 0.45. Besides that oddity, however, neither of

them seems to show any signs of settling down; totally in tune with Wolfram.

However, if, as before, the initial density is altered a little bit, we see a slightly different picture.

Figure 4.11 below illustrates this a little more clearly.

a0 = 0.02

a0 = 0.01

a0 = 0.005

(Figure 4.11) Extending the “settling down” period before CHAOTIC behaviour

At very low initial densities, the tell-tale signs of a “settling down” period seem to reappear; but this

time in reverse. The population rate seems to slowly climb upwards to a more stable level.

When watching such a CA evolve, one can best describe it as looking like the exact opposite to the

“settling down” period of an ordered system. It can be likened to watching the imaginary bath

draining in reverse; with puddles of chaotic behaviour slowly growing until the CA is completely full.

So it would seem that we can again split the evolution of these CA into two periods of behaviour; a

kind of “settling up” period followed by a maintained period of “chaotic” behaviour. For the majority of

the time, this chaotic behaviour is reached within a matter of 1 or 2 timesteps (seen as a quick

“bumping up” seen earlier in Rule 4) and so it has traditionally been overlooked.

In conclusion, rather than describing ordered systems as “settling down” and chaotic systems as

“never settling down” (as Wolfram does), it seems that we would be better served by describing both

systems as settling down to a level of behavioural stability; an important shift of perspective which

shall be examined in much more depth throughout the remainder this paper.

4.5 CONTRASTS BETWEEN ORDER AND CHAOS

Looking more closely at these levels of behavioural or population stability, one can immediately see a

stark contrast between the two classes of order and chaos. Based on these contrasts (and through the

extended study of a wider collection of rulesets not outlined within this paper) we can state the

© Stephen James

Page 16 of 52

following observational statements for all ordered and chaotic behaviour found within cellular

automata.

ORDERED BEHAVIOUR

1. After the initial “settling down” period, all rates reach a distinctive mean (a point of behavioural stability)

wherefrom they either remain static or show a flat periodic rate of change.

2. The mean of the population rate is always of a very low value, usually extremely close to zero.

3. The birth and death rates share the same mean which also tends to be extremely close to zero.

CHAOTIC BEHAVIOUR

1. After a (usually short) “settling down” period, all rates reach a distinctive mean (point of behavioural

stability) wherefrom they show a roughly flat, but extremely noisy (non-periodic) rate of change.

2. The mean of the population rate is always a high value which tends to be reasonably close to λ.

3. The birth and death rates share the same mean which is also of a reasonably high value.

In short, therefore, it is observed that both types of system exhibit a distinctive point of behavioural

stability and that a distinct difference can be found in the value (height) of this point, and in the type

of wave-pattern displayed once it has been reached.

Ordered systems tend to have a low and flat (or periodic) point of behavioural stability whereas

chaotic systems tend to have a high and noisy point of behavioural stability.

4.6 COMPLEXITY AND THE LACK OF BEHAVIOURAL STABILITY

Given such a clear and distinctive set of population dynamics found within ordered and chaotic

systems, we can now go on to examine our examples of complex behaviour.

From figure 4.9 it seems immediately evident that defining a distinctive mean or point of stability

becomes rather difficult. Although it may be said that the population rates are “generally low” it is

much more difficult to pinpoint an accurate average value as they seem to show a reasonably high

degree of long term variance (a behaviour that one might wish to call a random walk).

Unlike ordered and chaotic systems where a formal set of statements regarding the behaviour of

population rates can be made, it seems that with complex behaviour we can only talk in general

terms.

1. A distinctive settling down period is hard to observe, but there certainly appears to be a period of time

during which a large part of the system decays to leave pockets of complex behaviour. At this point the

random walk fluctuations of the population rates become less dramatic and they can be said to have

reached a kind of very rough (but difficult to measure) mean.

2. The population rate’s rough mean always lies at some low value between λ/2 and zero.

3. The birth and death rates share the same low rough mean somewhere below at.

Clearly, these statements are far less defined that those made for order and chaos; but importantly it

seems that the systems contain certain elements of both. It is almost as though complex behaviour is

a kind of difficult to pinpoint combination of ordered and chaotic characteristics.

The generally low population rate is a distinct characteristic of order, whilst the noisy fluctuations are

more akin to chaos.

© Stephen James

Page 17 of 52

4.7 POPULATION DYNAMICS AND ENTROPY VARIANCE

In 1996 Andy Wuensche highlighted a strikingly similar set of observations regarding the dynamics of

ordered, chaotic and complex behaviours, but from the entirely separate standpoint of Entropy

Variance. By recording the frequency distribution of rule lookups (or state configurations), he was able

to measure the effective entropy of the system using Shannon’s entropy equation (below).

∑
=















×






−=

k

i

t
i

t
it

n
Q

n
QS

2

1

)()(
)(log (4.2)

He found that chaotic behaviour showed a distinctively high level of entropy whilst ordered behaviour

showed a distinctively low level of entropy. For complex behaviour the entropy was seen to be much

less stable and would fluctuate greatly between high and low values in a kind of random walk.

This obviously sounds rather reminiscent of the observations made previously for population

dynamics; and in fact it seems that this relationship is stronger than mere descriptive analogy.

By plotting the min/max of the population rate alongside the min/max of the entropy variance, one

immediately becomes aware that the two measurements follow a similar path (see figure 4.12 below –

the entropy is shown in BLACK and the population rate in GREEN).

Entropy and at - Order

Entropy and at – Chaos

Entropy and at - Complexity

(Figure 4.12) Min/Max graphs showing the relationship between entropy and at

As the population rate grows, the entropy grows proportionately with it. As the population rate

decreases, so too does the entropy. The dynamics of the two measures are never quite the same but

they are most remarkably similar. If they were the same, one might reasonably assume that they

were measuring the same basic property of the system; but as they’re not, one might summise that

their closeness is due to them both being driven by the same underlying cause.

On discussing this observation with Andy himself, he proposed a possible (and seemingly likely)

explanation for what this underlying cause might be.

As the population rate increases more cells becomes available to make a broader set of state

configurations. The higher the population rate, the greater this distribution of configurations will

become. Or to put it another way, it is the change in population rate which drives the increase and

decrease in entropy.

This is discussed a little further in the concluding chapter of this paper, but may also benefit from

further study with an eye to crossing the academic bridge between CA and thermodynamic principles.

© Stephen James

Page 18 of 52

5 FOURIER ANALYSIS OF POPULATION DYNAMICS

Given our observations and measurements of Population Dynamics within the time domain, we now

move on to examine this data from the alternative perspective of the frequency domain.

5.1 FREQUENCY MEASURES AND TIMEWINDOWS

Methods for measuring frequency are well known and well documented. By use of a Fourier

transformation it is possible to turn a time-line analysis into a simple Power/ Frequency graph showing

the power of the underlying Sin and Cos fluctuations which make up the original waveform. Figure 5.1

shows an example of a FFT (Fast Fourier Transform) based on a set of simple equations:-

y = cos(x)

y = cos(x) + cos(5x) + cos(10x)

y = random

FFT for y=cos(x)

FFT for y = cos(x) +cos(5x)+cos(10x)

FFT for y = random

(Figure 5.1) Power /Frequency graphs for various simple equations

By taking the wave-patterns of the fluctuating population rates observed in the previous chapter we

can perform a similar FFT transformation to establish their underlying frequencies.

Figure 5.2 shows three such a FFT graphs based on the population rate in the Game of Life as it is

runs over 500 timesteps. The first shows the FFT of the population rate over the entire 500 timesteps.

The second shows the FFT of the population rate over a subset of this time (the first 100 timesteps)

and the third shows it over an opposing subset of time (the last 100 timesteps).

500 timesteps

500 timesteps

Timewindow 1

Timewindow 2

(Figure 5.2) Power/frequency graphs for the Game of Life

As can be seen, these subsets of time (timewindows) show distinctly different power/frequency

distributions and this is of extreme importance for a number of the observations and conclusions that

shall be drawn up later within this chapter.

T
im

e
 W

in
d

o
w

 1

T
im

e
 W

in
d

o
w

 2

© Stephen James

Page 19 of 52

5.2 POWER/FREQUENCY GRAPHS FOR CA EXAMPLES

Figures 5.3, 5.4 and 5.5 below show the timewindowed FFT graphs for three of our example CA.

Rate of change graph

FFT for timewindow 1

FFT for timewindow 2

(Figure 5.3) FFT graphs for ORDERED example (rule 1)

Rate of change graph

FFT for timewindow 1

FFT for timewindow 2

(Figure 5.4) FFT graphs for CHAOTIC example (rule 3)

Rate of change graph

FFT for timewindow 1

FFT for timewindow 2

(Figure 5.5) FFT graphs for COMPLEX example (Game of Life)

Looking at the ordered example we see that the first timewindow (which corresponds with the settling

down period) contains a certain amount of power at only the low frequencies. In the second

timewindow (once the CA has settled down to its ordered behaviour), we find no power anywhere in

the system; this is intuitively understood as at this stage the population rate remains constant.

In the chaotic system we find that both timewindows are very similar; they both show an extremely

small amount of power distributed throughout the entire range of frequencies with no major or

significant peaks.

Finally, in the complex system, both timewindows show significant amounts of power in low

frequencies and this is a pattern that is maintained throughout the life time of the complex behaviour.

timewindow 1

timewindow 2

timewindow 1

timewindow 2

timewindow 1

timewindow 2

timewindow 1

timewindow 2

timewindow 1

timewindow 2

© Stephen James

Page 20 of 52

5.3 CLASSIFYING BEHAVIOUR THROUGH POWER DISTRIBUTION

These power/frequency graphs are rather telling when considered from the perspective of CA

behavioural classification.

First, it seems that chaotic behaviour produces a distinctive type of population wave; a wave which

contains a well distributed (but low) amount of power across the entire frequency band.

For our ordered systems (putting aside our settling down period for a moment) the population wave is

also rather distinctive. It is generally flat and with little or no power.

Performing an FFT on the population wave of either of these behaviours, therefore, would allow one to

readily determine the class of behaviour.

For complex behaviour the population wave also contains a rather distinctive pattern, this time having

a significant amount of power in the lower frequencies. BUT, this pattern is also found within our

settling down period for ordered CAs (albeit with a slightly lower amount of power).

This similarity prompts us to take another look at the “settling down” period. It has already been

described as a kind of complex “bath emptying”; where chaos drains away to leave order.

In fact, if one examines certain CA with excessively long settling down periods (and stretches this

period through the adjustment of the initial density) then this complex draining seems to get ever

more complex.

Maybe, the settling down period can be considered to be a kind of complexity. The Game of Life, after

all, ends up in an ordered state after about 300 timesteps; could these 300 timesteps not just be a

prolonged kind of settling down?

The pattern of the population wave during the settling down period is certainly more indicative of

complex behaviour than either chaotic or ordered behaviour. Could this not be because the two are

both examples of the same systemic property? Is complex behaviour just a kind of prolonged settling

down?

In an attempt to try and clarify, and perhaps answer, this suggestion, let us now make a slight, but

important, detour through the often castigated world of 1/fb noise.

5.4 THE UBIQUITY OF 1/FB NOISE

1/fb noise (often called “flicker noise” or “pink noise”) is cited within many disciplines but generally

remains a rather poorly understood phenomenon (Milotti 2002). It is has been described by some as a

“measure of complexity” and has been found to exist in a number of natural and evolutionary systems

(West & Shlesinger 1990).

It is a measure of power versus frequency and can generally be stated as a phenomenon where the

power decreases exponentially as the frequency increases. It is more formally defined as:-

 log(power) ≈ log(f)b where 1≤b≤2

© Stephen James

Page 21 of 52

Graphically, this is shown as a straight line relationship between log(power) and log(frequency),

where the gradient of the line corresponds with the variable b. For 1/fb noise to be considered

interesting, this gradient (b) must be of a significant value (i.e. between 1 and 2).

For some researchers, 1/fb noise is a fabled power-law which describes a kind of temporal scale-

invariance within dynamic systems (in other words, a variance which shows fractal characteristics in

time rather than in space) and is a ubiquitous phenomenon unique to complex natural systems

(Gisiger 2001); but for many, such a view is controversial and as such it is widely disputed.

Given the previous power and frequency measures of our CA population dynamics, how do our own

observations fit within this argument? Figures 5.6, 5.7 and 5.8 show the corresponding log/log plots

for our earlier example timewindows (note, the dashed lines in each of the graphs demonstrate the

critical gradients of b=1 and b=2).

Rate of change graph

log(p)/log(f) for timewindow 1

log(p)/log(f) for timewindow 2

(Figure 5.6) Log(power)/Log(frequency) graphs for ORDERED example (rule 1)

Rate of change graph

log(p)/log(f) for timewindow 1

log(p)/log(f) for timewindow 2

(Figure 5.7) Log(power)/Log(frequency)graphs for CHAOTIC example (rule 3)

Rate of change graph

log(p)/log(f) for timewindow 1

log(p)/log(f) for timewindow 2

(Figure 5.8) Log(power)/Log(frequency) graphs for COMPLEX example (Game of Life)

timewindow 1

timewindow 2

timewindow 1

timewindow 2

timewindow 1

timewindow 2

© Stephen James

Page 22 of 52

Ordered behaviour shows a generally dull and flat log/log plot (figure 5.6) whilst chaotic behaviour is

flat but with a few random peaks (figure 5.7). For both behaviours, the gradient b is distinctly low,

and from the perspective of 1/fb noise, they are uninteresting.

Complex behaviours, on the other hand, with their significant power in the lower frequency range

show a log/log plot with a distinct and definite slope. In fact crucially, this slope (b) is found to waver

constantly between 1 and 2. From the perspective of 1/fb noise, this indicates that extremely

interesting (or complex) behaviour is being displayed.

To reword this a little, it appears that 1/fb noise is indeed highlighting a kind of complexity within

cellular automata (if we include our settling down period), and in this light, it can indeed be called a

“measure of complexity”.

However, it is with extreme caution that we make such a statement; and, as shall be seen, it is not

really a view that should be held onto too strongly. To generalise this statement to the wider domain

of “biological complexity” would, at the very least, be misleading and, at the very worst, be flatly

inaccurate.

As we shall see below, 1/fb noise may highlight a factor which is significant in distinguishing

complexity within cellular automata, but this factor may be so trivial that its ubiquity is meaningless.

5.5 UNDERSTANDING 1/FB NOISE

In order to propose a possible, and perhaps simple, explanation for the ubiquity of 1/fb noise, let us

take a quick look at the simplest of all wave functions; y=x.

Figure 5.9 shows this simple “wave” and, importantly, the results of a performing a FFT

transformation upon it. Immediately we can see that it exhibits a high level of power in low

frequencies dropping off exponentially as the frequency increases. Translated to a log/log plot, this

forms a perfect display of 1/fb noise (with b≈2). At this point one might, justifiably, ask: if 1/fb noise is

meant to be a measure for complexity, then how can it so easily be found in such a simple equation?

y=x

FFT of y=x

log(p) / log(f) of y=x

(Figure 5.9) Showing the FFT of y=x

Let us now examine this a little further, but studying the FFT of some other simple equations, to see

whether there is a commonality amongst those that display 1/fb noise.

© Stephen James

Page 23 of 52

y = 27+100x

FFT of y = 27+100x

log(p) / log(f) of y = 27+100x

y = x + random

FFT of y = x + random

log(p) / log(f) of y = x + random

y=x5

FFT of y=x5

log(p) / log(f) of y=x5

(Figure 5.10) Examples of equations WITH 1/fb noise

y = cos(x)

FFT of y = cos(x)

log(p) / log(f) of y = cos(x)

y = random

FFT of y = random

log(p) / log(f) of y = random

y = cos(x)+cos(5x)+cos(10x)

 FFT of y = cos(x)+cos(5x)+cos(10x)

log(p) / log(f) of y = cos(x)…

(Figure 5.11) Examples of equations WITHOUT 1/fb noise

© Stephen James

Page 24 of 52

In fact, from these simple examples (figures 5.10, 5.11) we can indeed make a tentative proposal

regarding the underlying reasons for the ubiquity of 1/fb noise. All of the examples where 1/fb noise is

found contain a proportional relationship between Y and X.

This observation is particularly stark when contrasting the equations y=random with y=x+random.

Simply by adding a relationship between y and x, the log(p)/log(f) plot suddenly shows the signature

of 1/fb noise. Could it simply be that 1/fb noise is highlighting this relationship?

A thorough analysis of this is not provided within this paper, but from our intuitions this may make

sense. A proportional relationship between Y and X basically means that Y is on some kind of long

term gradient (or slope) with respect to X. This gradient would possibly be picked up in a Fourier

Transform as a wave with an exceptionally long wavelength. Such a wave would effectively be

translated as a large power in a very low frequency (exactly the shape of 1/fb noise).

Let us now go back to our population graphs to see whether the 1/fb “measure of complexity”

corresponds with a gradient of some kind.

5.6 COMPLEXITY AND GRADIENTS

Consider the times where 1/fb noise was found to be present, and contrast them with the times where

it wasn’t.

We have already stated that 1/fb noise was NOT found during ordered or chaotic behaviours. At such

times, the population rate has been observed to be flat; fluctuating in either an ordered or random

fashion around a highly distinctive mean. In such behaviours, therefore, there is NO proportional

relationship between X and Y. No gradient in Y exists.

Conversely, when 1/fb noise IS present, we see that the population rate is either settling down or

performing a kind of random walk. The settling down slope obviously fits with our proposed

explanation of 1/fb noise, but what of the random walk.

One thing that is clear about random walks is that finding a distinctive mean between any two points

is extremely difficult. In fact, during a random walk one might describe a wave as being on a kind of

perpetual and constantly changing slope. This paper unfortunately doesn’t have the luxury to express

this in any greater clarity, but if this idea of a perpetual gradient within a random walk is so, then it

too fits with our proposed ubiquity of 1/fb noise.

And so, perhaps, we are able to conclude that it is the long term gradient of the population rate that is

the true signature of complexity (with 1/fb noise simply being a method of highlighting this gradient).

If this IS the case, then our view of long term complex behaviours being prolonged settling down

periods becomes much clearer. It could be said that it is upon the gradient towards behavioural

stability that we find complex behaviours and it is through the self-organised extension of this period

that complexity is able to stave off the dominance of order or chaos.

This view shall be discussed a little further in the concluding chapters of this paper; but first we shall

get some more evidence for it from the mathematical world of probability.

© Stephen James

Page 25 of 52

6 PROBABILISTIC ANALYSIS OF POPULATION DYNAMICS

In chapter 4 we highlighted a number of observations regarding population dynamics within cellular

automata. Within this chapter we aim to further understand these observations through an analysis of

the “Probable Dynamics” of the same systems.

6.1 THE PROBABILITY OF LIFE

Imagine, if you will, an infinitely large CA with a random initial configuration where 25% of the cells

are alive.

If we were to randomly choose a cell within this CA, we can say that there is a probability of 0.25 that

that cell would be alive – this is the probability of life and it equates to the population rate at time t.

Now consider the Moore neighbourhood of 9 cells (figure 6.1). In our imaginary CA, we can say that

each cell has a probability of life of 0.25; and hence can easily

deduce that the chance of being in a configuration where all nine

cells are alive is 0.259.

Conversely, we know that the chance of not being alive (or being

dead) is 0.75; and so we can state that the chance of being in a

configuration where all nine cells are dead is 0.759.

The chance of at least 3 cells being alive, is 0.253, and the chance of at least 6 cells being dead is

0.756; and so we can state that the chance of being in a configuration where at least 3 cells are alive

and at least 6 cells are dead (i.e. where exactly 3 cells are alive) is 0.253x0.756 (for each possible 3

cell configuration).

More formally, the chance of being in a configuration with n alive neighbours is 0.25nx0.759-n
.

Finally, we can say that, for an N neighbourhood CA with a proportion of at alive cells, the probability

for any cell being in a particular rule sate r (where r has nr alive cells in its configuration) is calculated

as:-

 rr nN
t

n
tt aarP −−⋅=)1()((6.1)

In other words (given at) we can calculate the probability for being in each of the states in a CA

ruletable.

To clarify this a little, let us return to our imaginary CA with a population of 25% alive cells. It needs

to have an underlying ruletable for us to calculate the probabilities, so for simplicity’s sake, let us

assume that it is a 1-dimensional, CA with a 3 cell neighbourhood and let us choose an arbitrary

ruletable for it (shown in figure 6.2).

As we know that at=0.25, we can use the formula in 6.1 to calculate a probability, P(r), for any

randomly chosen cell being in a particular configuration (figure 6.2).

N5 N1 N6

N4 Self N2

N8 N3 N7

(Figure 6.1) The Moore

neighbourhood

© Stephen James

Page 26 of 52

Rule r N1 Self N2 Result P(rt)

1 0.421875

2 ALIVE 0.140625

3 0.140625

4 ALIVE 0.046875

5 ALIVE 0.140625

6 0.046875

7 0.046875

8 0.015625

(Figure 6.2) Calculating the probabilities for rule states (when at = 0.25)

Take rule state 1 for example; 0 of the 3 cells are alive for this rule (nr=0, N=3). So:-

421875.0)25.01(25.0)(030 =−⋅= −
trP

And so, the chance of our random cell being in this state is calculated to be roughly 0.42; and so too

would it be 0.42 for some other randomly chosen cell, and so too for some other etc.

In fact, if we were to randomly choose all of the cells, we could predict that 42% of them will be in

state 1. Similarly, roughly 14% of then will be in state 2, 14% in state 3 etc.

We know from looking at the ruletable that only those cells found to be in state 2, 4 or 5 will be alive

at the next timestep; and so we can safely predict that, probabilistically speaking, roughly 33% of our

imaginary CA is likely to be alive in the next timestep.

So in conclusion, from knowing the underlying ruletable, and the initial proportion of alive cells (at) we

have been able to calculate a probable proportion of alive cells for the next timestep (at+1).

More formally, with R as the set of rules that result in an alive cell, we can state:-

 ∑
∈

+ =
Rr

tt rPa)(1
 (6.2)

And so in conjunction with (6.1):-

 ∑
∈

−
+ −⋅=

Rr

nN
t

n
tt

rr aaa)1(1
 (6.3)

Because N, and all values of nr in R are all constants derived from the CA ruletable, we can state that

equation 6.3 above expresses a simple, one-dimensional, function (f) of the form:-

)(1 tt afa =+ (6.4)

Thus, we have devised a logistic map for the probable dynamics of the population rate.

© Stephen James

Page 27 of 52

6.2 THE PROBABILITY OF BABIES AND CORPSES

In a similar vein, we can also derive a probability function for the number of babies and corpses that

will occur for any given population rate. To recap, a baby simply describes the situation where a dead

cell becomes alive, and a corpse describes the situation where an alive cell becomes dead.

So, studying the ruletable of our imaginary CA once again (figure 6.3 below) we can highlight the

results where a baby occurs or when a corpse occurs (simply be examining the rules where the self

cell and the result are different).

Rule r N1 Self N2 Result P(r)

1 0.421875

2 BABY 0.140625

3 CORPSE 0.140625

4 0.046875

5 BABY 0.140625

6 0.046875

7 CORPSE 0.046875

8 CORPSE 0.015625

(Figure 6.3) Calculating the probabilities for babies and corpses (with at=0.25)

In a similar way to before, we can state that the probability of falling into a configuration that results

in a baby is P(r2)+P(r5) (in this instance approximately 0.28), leading us to claim that approximately

28% of our CA will be babies in timestep (t+1).

The probability of leading to a corpse is the sum of P(r3), P(r7) and P(r8); and so we can say that our

CA will contain approximately 20% of corpses in timestep (t+1).

More formally, by defining two further subsets of our ruletable (with β as the set of rules that leads to

a baby, and δ as the set of rules that lead to a corpse) we can state:-

 ∑
∈

+ =
βr

tt rPb)(1
 =

 ∑
∈

−
+ −⋅=

βr

nN
t

n
tt

rr aab)1(1
 (6.6)

And:-

∑
∈

+ =
δr

tt rPc)(1
 =

 ∑
∈

−
+ −⋅=

δr

nN
t

n
tt

rt aac)1(1
 (6.7)

These equations are not one-dimensional logistic maps as they require an outside variable (at) in

order to be solved; however, as we shall see, they do provide a useful tool for analysing the probable

dynamics of cellular automata.

© Stephen James

Page 28 of 52

6.3 HOW TO PLOT THE DYNAMICS

The mathematics of dynamical systems has a marvellous tool for analysing one-dimensional logistic

maps, known as the Cobweb plot.

By plotting the function y=f(x) upon the same set of axis as y=x one can immediately begin to

visualise the dynamics of a one-dimensional system. For example, where the two paths cross, the

system can be said to contain a fixed point. This is a point at which the value of the next timestep will

be the same as the current; or, to put it another way, a point where the value will remain the same

forever. By then adding a Cobweb plot, one can visualise the dynamic path that will be taken from any

particular starting value; crucially allowing one to establish whether a fixed point is stable or unstable.

Figure 6.4 shows these plots for the previously defined functions for probable population, birth rate

and death rates (using the ruleset already provided for our imaginary CA). The x axis is the value at,

and the y axis is the value of either at+1, bt+1 or ct+1
 respectively. Keeping the convention used in our

rate-of-change graphs we use a GREEN line for the population rate (at+1), a RED line for our birth rate

(bt+1), and a BLUE line for our death rate (ct+1). As the birth rate and death rate are NOT logistic

maps, the concepts of fixed points and cobweb plotting are not relevant for them and so care must be

taken when considering them on the same axis.

Population rate only

Cobweb plot of Population Rate

All rates

(Figure 6.4) Building a Cobweb plot for the probable dynamics of a CA

6.4 PROBABLE DYNAMICS GRAPHS FOR CA EXAMPLES

Armed with these plotting techniques, we can now return to our example CAs. Using the previously

defined probability functions and the specific ruleset for each CA, we can draw up a series of graphs

that display the probable dynamics of each. These are provided in the following figures, alongside the

actual observed dynamics already highlighted in chapter 4.

Probable Population Dynamics

Actual Observed Dynamics

Birth, Death and Population

(Figure 6.5) Probable and actual dynamics of ORDERED rule 1

© Stephen James

Page 29 of 52

Probable Population Dynamics

Actual Observed Dynamics

Birth, Death and Population

(Figure 6.6) Probable and actual dynamics of ORDERED rule 2

Probable Population Dynamics

Actual Observed Dynamics

Birth, Death and Population

(Figure 6.7) Probable and actual dynamics of CHAOTIC rule 3

Probable Population Dynamics

Actual Observed Dynamics

Birth, Death and Population

(Figure 6.8) Probable and actual dynamics of CHAOTIC rule 4

Probable Population Dynamics

Actual Observed Dynamics

Birth, Death and Population

(Figure 6.9) Probable and actual dynamics of COMPLEX rule 5 (Game of Life)

© Stephen James

Page 30 of 52

Probable Population Dynamics

Actual Observed Dynamics

Birth, Death and Population

(Figure 6.10) Probable and actual dynamics of COMPLEX rule 6

These graphs highlight a number of important factors relating to the underlying dynamics of CA

behaviour, and the remainder of this chapter aims to highlight and examine some of the most striking.

6.5 POPULATION ATTRACTORS OF ORDER AND CHAOS

The first, and potentially most important, observation relates to the fixed points found within the

probable population dynamics graphs for our ordered and chaotic systems (an examination of the

fixed points within complex systems is left for a later section of this chapter).

First, we note that all systems have a fixed point at ZERO (let this be called the Z fixed point). This

may initially appear somewhat trivial as in the language of CAs it simply means “if no cells are alive

(at = 0), then no cells will come alive (at+1 = 0)”. However, the “attraction” of this fixed point varies

crucially amongst the different classes of CA.

For both of our ordered CAs the y=f(x) curve lies entirely below the y=x line and so no further fixed

points exist. Consequently, this Z fixed point can be shown to be a perfectly stable attractor. In the

language of population dynamics, this means that the population rate is destined to decay towards

zero and, crucially, this corresponds precisely with what was previously observed in the real-time

dynamics for ordered systems.

Conversely, in the probable dynamics plots for our chaotic CA, we find a second fixed point at some

value higher than zero (let this be the C fixed point). The overall shape of the y=f(x) curve is such

that this C fixed point can be shown to be a perfectly stable attractor (figure 6.11). Crucially, this once

again matches what was observed in the real-time dynamics for chaotic systems. Whatever the initial

conditions, the population rate always converges toward some value higher than zero.

Rule 3

Rule 4

(Figure 6.11) Cobweb plots showing the stability of the C fixed point

© Stephen James

Page 31 of 52

In fact, the C fixed point seems to coincide exactly with the values observed for the points of

behavioural stability (see figure 6.12). The C point (or chaotic) attractor drags the population rate up

to a point of stability, from where the it simply fluctuates in a random manor.

Rule 3

Rule 4

(Figure 6.12) Comparing probable with actual dynamics

6.6 SETTLING DOWN

Let us now examine another phenomenon of CA behaviour that the probability graphs are able to

accurately predict (at least within ordered or chaotic systems); the settling down period prior to

behavioural stability. We have already observed that the two ordered examples have slightly different

settling down periods; the first (rule 1) settles down after about 20 timesteps, whilst the second (rule

2) settles down after just 5. By drawing up a cobweb plot with similar initial conditions (at=0.25) we

can see that this settling down period corresponds exactly with the expected number of steps needed

to reach the Z attractor.

Rule 1: Settling down takes 20 timesteps

Rule 2: Settling down takes 5 timesteps

(Figure 6.13) Cobweb plots showing the settling down period starting at a0 = 0.25

Within the graph for rule 1, y=f(x) comes very close to y=x, and this can be seen as a kind of “slow

rut”, during which the rate of change slows right down. Conversely in the graph for rule 2, the gap

between y=f(x) and y=x is much wider, meaning that the rate of change will be a lot quicker.

© Stephen James

Page 32 of 52

6.7 BIRTH AND DEATH

Before moving on to look at the probable dynamics of our complex system, let us first take a brief

look at the probable dynamics of birth and death across all systems (please note once again that the

birth and death graphs aren’t setup to provide us with any of the traditional dynamical systems

analysis of fixed points and attractors; they are merely cross-referenced with the population rate).

The first, intuitive, observation is that the point at which the two rates cross corresponds with the

point at which the population rate of the system remains stable. In other words, a system will

maintain a level population rate only when the number of births and deaths are the same (figure

6.14).

Rule 4

Rule 5

(Figure 6.14) The correspondence of Birth/Death crossover and Population Fixed Points

Secondly, from our earlier comparison of probable dynamics for chaotic systems with real-time

observations (figure 6.12) we see that this birth/death crossover point also corresponds exactly with

the distinctive mean that was observed for the two rates once behavioural stability had been reached.

Finally, however, it is important for us to observe a point where the probable dynamics and realtime

observations don’t quite marry up. Consider once again, the settling down period for our chaotic rule

3. We observed that the population rates remain in close proximity to one another on the climb

towards stability, but in looking at the probable dynamic graphs this is at odds with the probabilistic

behaviour (figure 6.15).

Observed Settling down

Probable dynamics

(Figure 6.15) Improbably birth and death convergence in chaotic settling down

According to probability the birth rate should be significantly higher than the death rate during this

period; but, for some reason, reality maintains the birth/death status quo. During this complex

settling down period, the birth and death rate appears to be acting in a somewhat improbable fashion;

an observation that is unfortunately beyond the scope of this paper but would benefit greatly from

further investigation.

© Stephen James

Page 33 of 52

6.8 COMPLEXITY WITHIN PROBABILITY DYNAMICS

Finally, we look at complexity from the perspective of our probability dynamic graphs.

In looking at figures 6.9 and 6.10 one immediate and potentially stunning observation arises. It would

appear that both of our examples contain BOTH a semi-stable Z fixed point AND a semi-stable C fixed

point with an unstable fixed point providing the bifurcation of stability somewhere in between (figure

6.16 highlights these fixed points a little more clearly).

Rule 5

Rule 6

(Figure 6.16) Highlighting the Fixed points in examples of complex rulesets

Immediately one might be led into thinking that this is some kind of unique signature of complexity; a

mix of attractions from the depths of order and the heights of chaos.

One might begin to visualise a system which is kept in continual motion from the forces of ordered

decay and chaotic growth; a population rate forced into a perpetual gradient in a constantly changing

landscape. One might further be reminded of the early Complexity Theoretic ideas of phase transitions

but where complexity lies not on the edge, but on the overlap of chaos and order.

But alas, the results are a little misleading. Not all complex rulesets contain the two attractors of C

and Z; in fact, a reasonable proportion of them contain no C fixed point at all (making them look

probabilistically ordered). As an example, consider the following ruleset for a complex CA (full

ruletable found in Appendix A).

RULE 7: COMPLEX : MOVING DIAGONAL LINES

t=1

t=10

t=40

t=100

(Figure 6.17) Snap shots of CA Rule 1, taken every 10 timesteps

Chaos dissolves after around 10 timesteps to leave (predominantly) a series of growing diagonal lines.

Collisions occur where the lines meet leading to a burst of chaotic activity until on line dominates.

After a very long period of time, the system reaches an ordered state (where all diagonal lines have

battled it out and no more collisions will take place).

© Stephen James

Page 34 of 52

The population and probability dynamic graphs for this new CA are shown below (figure 6.18).

Probable Population Dynamics

Actual Observed Dynamics

Birth, Death and Population

(Figure 6.18) Probable and actual dynamics of CHAOTIC rule 4

The observed behaviour of the system is most definitely complex, but the probable dynamics graphs

seem far more in tune with an ordered system (there is a distinct lack of a C fixed point). In fact,

accordingly to the probability graphs, the population rate should just dissolve away to nothing (albeit

reasonably slowly).

From the wider study of all the complex rulesets found within the Looking for Life report we seem to

find two categories of complex CA ruleset. Some with the two points of attraction, and others with just

a Z point attractor.

Without giving an evolutionary description of each it is difficult to fully detail the difference between

the two, but in watching their multifarious evolutions in real-time, they do display subtly distinctive

characteristics.

For the multi-attractor complex rulesets, the complex behaviour is, for want of a better word, more

complex. It often contains large, long cycle replicators and pockets of chaos which sporadically fire off

gliders with a generally long and convoluted cycles of states.

For the more ordered looking complex rulesets, the complex behaviour usually consists of a far

cleaner environment containing simple 2-state replication and minimal gliders made up of just a

couple of blocks and with just a couple of periods in their lifecycle.

Figures 6.19 and 6.20 give a handful of screenshots to try and help illustrate this difference.

Replicating squares

Diagonal Snakes

Double Lines

Double lines and Diagonals

(Figure 6.19) Example screenshots of ordered complexity

© Stephen James

Page 35 of 52

Game of Life

Replicating Glider Guns

Snowflakes

Big Blobs

(Figure 6.20) Example screenshots of multi-attractor (chaotic) complexity

To take this is little further, it might be said that the complex behaviour found within CAs varies all the

way from simple (2 or 3 state cyclical patterns) to much more unusual (high-state) cycles surrounded

with pockets of chaos. In other words, there is a kind of scale, a kind of “strength of complexity”,

which corresponds (to some degree) with the observations from the probability dynamics graphs. The

louder the chaotic attractor, the more complex the behaviour found within the system.

This admittedly loose and tentative observation introduces the concept of a “strength of complexity”

and is looked at a little further in the concluding chapter of this report. For the most part, however,

this idea really needs much further investigation if it is to gain credibility and, most regrettably, this

cannot be achieved within the bounds of this paper.

6.9 CLASSIFICATION THROUGH PROBABILITY DYNAMICS

Through the wider study of a great many ordered, chaotic and complex rulesets, it seems that the

following statements can be made regarding the classification of CA behaviour through the study of

probability dynamics.

Firstly, all chaotic CA contain a perfectly stable C-point attractor toward which the population rate will

converge.

Secondly, all ordered CA lack this C-point attractor and, instead, contain a perfectly stable Z point

attractor; leading the population rate to dissolve quickly away (what is not captured by the probable

dynamics is the extent to which simple blinkers and blocks may be seen – this is discussed within the

concluding chapter of this paper).

Finally, about two thirds of complex rulesets contain two, semi stable, attractors with the rest

containing just a single, stable, Z point. Those that have two attractors show a far “stronger” kind of

complexity than those that only contain one.

From these observations we can conclude that a CA with a perfectly stable C-point attractor can be

predicted to be chaotic; and that, similarly, a system with a semi-stable C-point attractor can be

predicted to be strongly complex.

Unfortunately, the lack of a C-point attractor may indicate either an ordered system or a weakly

complex one and so we do not yet have a complete prediction scheme from probability dynamics. It is

noted, however, that being able to predict chaotic and strongly complex behaviours is a faculty that is

of importance enough to make probability dynamics a study worth further examination.

© Stephen James

Page 36 of 52

7 CONCLUSIONS

7.1 REFINED DEFINITIONS OF COMPLEXITY

To conclude, we shall now attempt to combine some of these observations in order to refine the

current definitions of order chaos and complexity within cellular automata; but first let us remind

ourselves of the link between entropy and population rate highlighted in chapter 4. It was stated that

as the population rate rises, it drives up the entropy of the system (through the generation of a wider

repertoire of rule-states).

Consider now a dynamic system with a stable C point attractor. Probability alone dictates that the

population rate will naturally adjust to reach this point of stability. During this “settling down” the

entropy of the system fluctuates in accordance with the population rate’s own fluctuation; if the

population rate makes a gentle incline, so too will the entropy. This happens all the way towards the

point of stability when both population and entropy will remain at a reasonably high value. In short,

the existence of the C-point attractor pulls the system to a point of high and stable entropy – a point,

in thermodynamics, known as chaos.

Next consider a perfectly ordered dynamical system where all cells eventually die (Wolfram Class I).

Such a system contains a perfectly stable Z point attractor and the population rate swiftly drops off to

zero. This drop pulls the entropy of the system down with it leaving the system, eventually, in a state

of zero entropy – a point of thermodynamic order.

Some dynamical systems don’t quite die away to complete quiescence, they leave behind exceedingly

simple blocks or blinkers (Wolfram Class II). Although close to perfect order (and most definitely a

kind of behavioural stability) one may like to reconsider this class as the first step in an increase in

behavioural complexity. The population rate in such a system drops away extremely quickly towards

zero (as predicted by the probable dynamics) but is kept slightly away from zero by this slight rise of

complexity. In such a system, the entropy, dragged by the low population rate, is extremely low, and

extremely stable, but it is not quite in a state of perfect order.

As we increase the complexity these blocks and blinkers become a little more complex and start to

contain a kind of basic motion or ordered complexity. An example of this motion is given in figure 7.1

below (taken directly from our rule 7).

(Figure 7.1) Example of emergent motion (ordered complexity)

© Stephen James

Page 37 of 52

In such a system, the population rate drops again towards zero, but collisions of emergent moving

particles add a certain amount of random-walk noise into the proceedings; this is mirrored within the

system’s entropy which shares these occasional fluctuations but remains at a generally low and stable

value.

As the complexity is increased further, the C-point attractor begins to gain strength and the system

starts to become partly driven by chaos. At this point (whilst neither the C and Z point attractor is

fully stable) we see much more advanced kinds of behaviour, including complex replicators and multi-

state movement (gliders). The population rate fluctuations become far louder and so too do the

corresponding fluctuations of entropy.

As the C-point attractor gets stronger and stronger, the complexity of the system is eventually

dragged to a point where chaos (the most complex of all systemic behaviours) finally takes hold.

This hypothesised rise in complexity within dynamic systems is only tentatively proposed and requires

a great deal more investigation in order to gain acceptance as a general and measurable property of

cellular automata (and perhaps complex dynamic systems in general). It bears great semblance with

the early ideas proposed by Chris Langton and the Santa Fe Institute (Langton 1990); but has a

crucial shift in including fixed and periodic (Class II) behaviours as basic examples of complex

emergent phenomenon.

The rise is partly observed within the probability diagrams outlined in chapter 6, but unfortunately it

isn’t yet stark enough to be considered a measurable quantity. For a general illustration, however, the

purposely evocative series of diagrams in figure 8.1 aims to show an initial flavour of how this rise in

complexity may look once observed.

Pure order

Blinkers

Basic Motion

High Complexity

Chaos

increasing complexity

(Figure 8.1) The rise of complexity

© Stephen James

Page 38 of 52

8 PROPOSITIONS

8.1 A MEASURE OF IMPROBABILITY

Let us now take a look at a possible piece of future work which aims to create a firmer measure for

this hypothesised rise in complexity.

Chaotic systems, it seems, work in a probable fashion (in other words, they are in accordance with the

probable dynamic of the system).

Purely ordered systems (ones which end up in a purely quiescent state) also work in a probable

fashion (one that is in accordance with the probable dynamics of the system).

The rise of blinkers, and the further rise of motion, seems to equate to a general decrease in

accordance with the probable dynamics of the system (or in other words, a rise of improbability). The

more convoluted the emergent phenomena, the more improbable it becomes (the less in accordance it

is with the probable dynamics predicted for the system). Perhaps, therefore, one could equate a rise

in complexity with a rise in improbability.

If one were to be able to determine a mathematical model of the actual dynamics (say from a test set

of initial conditions) and combine this with the models of probability one could determine a measure

for improbability. As such, one would have a potential measure for complexity within cellular

automata.

8.2 APPLICATIONS FOR THE MATHEMATICAL METHODS

The measurements of Population Dynamics outlined in chapter 3 are not exactly new to the field of

cellular automata research; however, until now they have not been precisely defined so as to

represent a formally methodology for CA analysis. These methods, free from the binds of cell-states,

are measurable for all CA of any size or shape and as such they represent a power tool for cross

referencing amongst all CA research. It is also suggested that these methods will prove to be general

enough to move beyond the basic examination of CAs to the wider fields of discrete dynamic systems

(with particular focus on the notions of complexity within such systems). For example, one might

extend this study to observe the global behaviours of Random Boolean Networks and contrast the

results with this research to gain a wider understanding of complexity within both systems.

The introduction of probability theory and the shift from rule-space to probability space in chapter 6

has proven to be an exceptionally useful method of moving from the world of discrete dynamics to the

more attractive world of continuous dynamical systems. By defining a logistic map for a macroscopic

behaviour (the population rate) based on the microscopic discrete dynamical rules of the system, it

was possible to use the standard visualisation techniques adopted for continuous dynamics systems to

view the probable attractors of this behaviour. Such a technique may prove to have a much wider

scope of application within a number of different fields ranging from economics to the burgeoning field

of mathematical biology. Any complex system based on a simple set of discrete rules may benefit

from the introduction of a probabilistic analysis of likely macroscopic behaviours.

© Stephen James

Page 39 of 52

8.3 LIFE FAR FROM EQUILIBRIUM

Let us close this paper with a look at the complexity’s place within the general sciences of systems

(particularly within the resurgent field of thermodynamics). An initial look at the timeline graphs in

chapter 4 showed a “settling down” period for both ordered and chaotic behaviour, after which a

period of behavioural stability (or behavioural equilibrium) was observed to exist. For complex

behaviour, no such point of behavioural stability was observed.

Through the Fourier transforms of chapter 5, it was found that these behavioural equilibria (ordered or

chaotic) both fluctuate with generally insignifant amounts of power distributed throughout the

frequency band. Complex and settling down behaviours, on the other hand, both possess a

disproportionate amount of power in the low frequencies. From the perspective of 1/fb noise, these

power distributions seemed indicative of the presence of a “gradient” within the waveform. As both

settling down and complex behaviours possess such a power distribution, it was proposed that both

represent a slope towards behavioural stability; the only difference being how long this slope is able to

be maintained.

From Chapter 6’s examinations from the world of probability it was found that the settling down

period could be redefined as the process of reaching a systemic attractor (a point of systemic

equilibrium); or, in other words, that settling down was a process of equilibrialisation.

If complex behaviour is just a prolonged settling down period, then it makes sense that it is the

interactions of emergent particles which are the means for this proloinging to take place. In other

words, complex emergent phenemomena are the means by which a system keeps itself far from

equilibrium (see also Prigogine 1967).

It is interesting to contemplate that (for CA at least) the behaviours that maintain this “far from

equilibrium” position for the longest are those that contain gliders (emergent particles able to move)

and replicators (emerging particles able to reproduce).

Movement and reproduction, the prolongers of systemic disequilibrialium and the stavers of order and

chaos, also happen to be two of the fundamental properties of Life.

In modern thermodynamics, gradient reduction and the principle of maximum entropy production

have already begun to make a similar crossover between Life and its position within our systemic

Universe. Schneider and Sagan, authors of a wonderful book on the subject, capture these ideas

magnificently when they declare that “nature abhors a gradient” (Schneider & Sagan 2005).

From the perspective of this paper, however, if nature abhors a gradient, maybe complexity, and Life,

adores one.

© Stephen James

Page 40 of 52

9 REFERENCES

Baas N.A. (1994) “Emergence, hierarchies and hyperstructures”, Artificial Life III, SFI Studies in the Sciences of
Complexity (17) pp. 515-537

Baas N.A., Emmeche C. (1997) “On Emergence and Explanation”, Intellectica (25) pp. 67-83

Berlekamp E. R., Conway J. H., Guy R. K. (1982) "Winning Ways for Your Mathematical Plays, Vol. 2: Games in
Particular”, Ch 25, London: Academic Press

Bickhard M.H., Campbell D.T. (2000) “Emergence”, in Downward Causation, Aarhus University Press.

Campbell R.J., Bickhard M.H. (2002) “Physicalism, Emergence and Downward Causation”, unpublished
www.lehigh.edu/~mhb0/physicalemergence.pCf

Capra F. (1996) “The Web of Life: A new synthesis of mind and matter”, Harper Collins

Capra F. (2002) “The Hidden Connections”, Harper Collins

Cariani P. (1997) “Emergence of new signal-primitives in neural systems”, Intellectica (25) pp. 95-143

Cariani P. (1990) “Emergence and Artificial Life”, Artificial Life II, SFI Studies in the Sciences of Complexity (10) pp.
775-798

Crutchfield J.P. (1994) “Is anything ever new? Considering emergence”, Complexity: Metaphors, Models and
Reality, Santa Fe Institute Studies in the Sciences of Complexity (19) pp. 479-497

Crutchfield J.P., Mitchell M. (1995) “The Evolution of Emergent Computation”, Proceedings of the National
Academy of Sciences, USA 92:23 10742-10746.

Coveney P., Highfield R.. (1995) “Frontiers of Complexity: Search for Order in a Chaotic World”, Faber and Faber.

Davies P. (2003) “Towards an Emergentist Worldview”, in From Complexity to Life, Oxford University Press

Feigenbaum M. (1978) “Quantitative Universality for a class of nonlinear transformations”, Journal of Statistical
Physics (19) pp 25-52

Forrest S. (1990) “Emergent computation: self-organizing, collective, and cooperative phenomena in natural and
artificial computing networks.”, Physica D (42: 1-3) pp. 1-11

Ganguly N., et al. (2003) “A Survey on Cellular Automata”, Technical Report Centre for High Performance
Computing, Dresden University of Technology

Gershenson C. (2004) “Introduction to Random Boolean Networks”, in Workshop and Tutorial Proceedings 9th Int
Conf. on the Simulation and Synthesis of Living Systems (ALife IX) pp. 160-173

Gisiger T. (2001) “Scale invariance in biology: coincidence or footprint of a universal mechanism?” Biol Rev Camb
Philos Soc 76, pp. 161-209

Guy R.K., Conway J.H. (1985) “Mathematical People: Profiles and Interviews”, Cambridge MA, pp. 43-50.

Hanson J.E., Cruthfield J.P. (1994) “The attractor-basin portrait of a cellular automaton”

Holland J.H. (1998) “Emergence: From Chaos to Order”, Oxford University Press

James S. (2005) “Looking for Life: Finding Complexity in the CA Landscape”, Unpublished, University of Sussex

Johnson S. (2001) “Emergence”, Penguin Press

Kauffman S. (1993) “The Origins of Order”, Oxford University Press

Kubik A. (2003) “Towards a Formalization of Emergence”, Artificial Life (9) pp. 41-65

Langton C.G. (1989), "Artificial Life", In Artificial Life. Addison-Wesley. pp. 1-47

Langton C.G. (1990) “Computation at the edge of chaos: Phase transitions and emergent computation”, Physica D
vol. 42, pp. 12-37.

Lorenz E. (1963) “Deterministic nonperiodic flow”, Journal of the Atmospheric Sciences (20) pp 130-141

Lovelock J. (1979) “Gaia: A new look at life on Earth”, Oxford University Press

Lewin R. (1993) “Complexity: Life at the Edge of Chaos”, Phoenix Press

Mandelbrot B. (1977) “The Fractal Geometry of Nature”, New York: Freeman

Milotti E. (2002), "1/f noise: a pedagogical review", arxiv preprint, physics/0204033

© Stephen James

Page 41 of 52

Mitchell M., Crutchfield J.P., Das R. (1997) “Evolving Cellular Automata to Perform Computations”, working
paper, SFI

Mitchell M., Hraber P.T., Crutchfield J.P. (1993) “Revisiting the Edge of Chaos: Evolving Cellular Automata to
Perform Computations”, Complex Systems 7, pp. 89-130.

Mitchell M. (1998) “A Complex-Systems Perspective on the "Computation vs. Dynamics" Debate in Cognitive
Science”, Twentieth Annual Conference of the Cognitive Science Society

Morowitz H. (2002) “The Emergence of Everything: how the world became complex”, Oxford University Press

Ninagawa S. (1998) “1/f fluctuation in the Game of Life”, Physica D vol. 118, pp. 49-52

Ninagawa S. (2005) “Evolving Cellular Automata by 1/f Noise”, proceedings of ECAL 2005

Packard N.H. (1988) "Adaptation toward the edge of chaos", Dynamic Patterns in Complex Systems, pp. 293-301

Prigogine I. (1967) “Thermodynamics of irreversible process”, New York: John Wiley and Sons

Prigogine I., Stengers I. (1981) “Order out of chaos: Man’s new dialogue with nature”, New York: Bantam

Schneider E.D., Sagan D. (2005) “Into the cool: Energy flow, thermodynamics and life”, University of Chicago
Press

Sipper M (1996) “Co-evolving Non-uniform Cellular Automata to perform Computations”, Physica D vol. 92, pp.
193-208

Van Bertalanffy L. (1969) “General System Theory: Foundations, Development, Applications”, New York: George
Braziller

Von Neumann J. (1966) “The theory of self reproducing automata”, Univ. of Illinois Press

Van Gulick R. (2001) “Reduction, Emergence and Other Recent Options on the Mind/Body Problem: A Philosophic
Overview”, Journal of Consciousness Studies (8: 9-10) pp. 1-34

Waldrop M. (1992) “Complexity: The emerging science at the edge of order and chaos”, Simon & Schuster

West B.J., Shlesinger M.F. (1990), "The noise in Natural Phenomena", American Scientist, 78:40-45

Wolfram S. (1984) “Universality and complexity in cellular automata”, Physica D vol. 10

Wolfram S. (2002) “A New Kind of Science”, Wolfram Media

Wuensche A (1996) “Attractor Basins of Discrete Networks”, unpublished D.Phil thesis, University of Sussex

© Stephen James

Page 42 of 52

APPENDIX A: CA RULETABLES

The CA ruletables are defined using the following binary numbering scheme.

Moore neighbourhood numbering scheme

32 2 64

16 1 4

256 8 128

Examine rule = 354

32 2 64

256

(Figure A.1) Binary numbering scheme for CA ruletables

RULE 1: ORDERED: WITH A SLOW DECAY

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

X16

RULE 2: ORDERED: WITH A QUICK DECAY

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

X16

RULE 3: CHAOTIC: WITH A LOW Λ

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

X16

© Stephen James

Page 43 of 52

RULE 4: CHAOTIC: WITH A HIGH Λ

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

X16

RULE 5: COMPLEX: GAME OF LIFE

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

X16

RULE 6: COMPLEX: REPLICATING GLIDER GUNS

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

X16

RULE 7: COMPLEX: MOVING DIAGONAL LINES

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

X16

© Stephen James

Page 44 of 52

APPENDIX B: CATS SCREEN SHOTS

CATSMAIN

Open new screens

Load / Save CA ruleset

Current CA type

Current CA filename

(Figure B.1) catsMAIN screen

CATSRUN

Start / Pause / Stop CA

Change CA Run Settings

Main CA Screen

Scroll

(Figure B.2) catsMAIN screen

CATSANALYSE

Save Image

Timeline Options

Main Stats Screen

Frequency Options

(Figure B.3) catsMAIN screen

© Stephen James

Page 45 of 52

CATSCREATE

CA Creation buttons

CA Target Options

GA Options

Message board

(Figure B.4) catsMAIN screen

CATSFILE

Import Rule from CSV

Export Rule to CSV

(Figure B.5) catsMAIN screen

© Stephen James

Page 46 of 52

APPENDIX C: SOURCE CODE

The CATS Project is split into four main elements.

First, the main function sets up two core global classes. One

for the CA and one for its STATS. This function also opens the

catsMAIN screen.

Next, there is the source code which underlies all of the

screens (shown in Appendix B). This code captures all user

interaction requests and changes the properties within the

global classes accordingly.

Finally there are the two main classes and their methods.

classCA – contains all properties and methods relevant for the

setup and running of cellular automata.

classStats – contains all of the properties and methods

required for the setup and running of Population Dynamic

statistical information

MAIN FUNCTION

function[] = cats()
 clear;

 global fld;
 global theCA; global pauseca; global stats;
 global figMain; global figRun; global figCreate; global figAnalyse; global figFiles; global figLandscape;

 fld = 'C:\Data\University\Courses\MScProject\';
 initfile = 'Chosen Few\2 state - 2 dimensions\GoL.mat';

 theCA = classCA;
 stats = classStats;
 theCA = classCALoad(theCA, cat(2,fld,initfile));

 figMain = openfig('catsMain.fig');
 catsMain('setupscreen');
end

SCREEN – CATSMAIN

function varargout = catsMain(varargin)
 gui_Singleton = 1;
 gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @catsMain_OpeningFcn, ...
 'gui_OutputFcn', @catsMain_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
 if nargin && ischar(varargin{1})
 if (strcmp(varargin{1},'setupscreen') == 1)
 setupscreen();
 else
 gui_State.gui_Callback = str2func(varargin{1});
 end
 end

 if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
 else
 gui_mainfcn(gui_State, varargin{:});
 end
end

function catsMain_OpeningFcn(hObject, eventdata, handles, varargin)
 handles.output = hObject; guidata(hObject, handles);
end

function varargout = catsMain_OutputFcn(hObject, eventdata, handles)
 varargout{1} = handles.output;
end

function cmdrunca_Callback(hObject, eventdata, handles)
 global figRun; figRun = openfig('catsRun.fig'); catsRun('setupscreen');
end

function cmdimportca_Callback(hObject, eventdata, handles)
 global figFiles; figFiles = openfig('catsFiles.fig');
end

function cmdanalyseca_Callback(hObject, eventdata, handles)
 global figAnalyse; figAnalyse = openfig('catsAnalyse.fig'); catsAnalyse('setupscreen');
end

function cmdcreateca_Callback(hObject, eventdata, handles)
 global figCreate; figCreate = openfig('catsCreate.fig');
end

function cmdlandscapeca_Callback(hObject, eventdata, handles)
 global figLandscape; figLandscape = openfig('catsLandscape.fig');
end

function cmdloadca_Callback(hObject, eventdata, handles)
 global theCA; global fld;
 global figMain; handles = guihandles(figMain);

 a = actxcontrol('MSComDlg.CommonDialog.1');
 a.InitDir = fld; a.Filename = ''; a.Filter = 'mat'; a.ShowOpen;
 theCA = classCALoad(theCA, a.Filename);
 setupscreen(); release(a);
end

function cmdsaveca_Callback(hObject, eventdata, handles)
 global theCA; global fld; global figMain; handles = guihandles(figMain);

 a = actxcontrol('MSComDlg.CommonDialog.1');
 a.InitDir = fld; a.Filename = ''; a.Filter = 'mat'; a.ShowSave;
 theCA = classCASave(theCA, cat(2,regexprep(a.Filename,'.mat',''),'.mat'));
 setupscreen(); release(a);
end

function setupscreen()
 global theCA; global figMain; handles = guihandles(figMain);

 set(handles.filename,'String',theCA.filename);
 set(handles.nodim,'String',num2str(theCA.nodim));
 set(handles.nostates,'String',num2str(theCA.nostates));
 set(handles.noneighbours,'String',num2str(theCA.noneighbours));
 set(handles.lambda,'String',num2str(theCA.lambda));
end

SCREEN - CATSRUN

function varargout = catsRun(varargin)
 gui_Singleton = 1;
 gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @catsRun_OpeningFcn, ...
 'gui_OutputFcn', @catsRun_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
 if nargin && ischar(varargin{1})
 if (strcmp(varargin{1},'setupscreen') == 1)
 setupscreen();
 else
 gui_State.gui_Callback = str2func(varargin{1});
 end
 end
 if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
 else
 gui_mainfcn(gui_State, varargin{:});
 end
end

function catsRun_OpeningFcn(hObject, eventdata, handles, varargin)
 handles.output = hObject;
 guidata(hObject, handles);
end

function varargout = catsRun_OutputFcn(hObject, eventdata, handles)
 varargout{1} = handles.output;
end

function cmdrestartca_Callback(hObject, eventdata, handles)
 global theCA; global pauseca;
 global figRun; handles = guihandles(figRun);

 set(handles.cmdrestartca,'Enable','off');
 set(handles.gridsize,'Enable','off');
 set(handles.initpopulation,'Enable','off');
 set(handles.cmdstopca,'Enable','on');
 set(handles.cmdresetca,'Enable','off');

 pauseca = 0;
 theCA = classCARun(theCA,0,0);

 if (theCA.currenttimestep >= theCA.maxt)
 set(handles.cmdresetca,'Enable','on');
 set(handles.gridsize,'Enable','on');
 set(handles.initpopulation,'Enable','on');
 set(handles.cmdstopca,'Enable','off');
 set(handles.cmdrestartca,'Enable','off');
 end
end

function cmdstopca_Callback(hObject, eventdata, handles)
 global theCA; global pauseca;
 global figRun; handles = guihandles(figRun);

 set(handles.cmdrestartca,'Enable','on');
 set(handles.cmdstopca,'Enable','off');
 set(handles.cmdresetca,'Enable','on');
 set(handles.gridsize,'Enable','on');
 set(handles.initpopulation,'Enable','on');

 pauseca = 1;
end

function cmdresetca_Callback(hObject, eventdata, handles)
 global theCA; global pauseca; global stats;
 global figRun; handles = guihandles(figRun);

 set(handles.cmdrestartca,'Enable','off');
 set(handles.gridsize,'Enable','off');
 set(handles.initpopulation,'Enable','off');
 set(handles.cmdstopca,'Enable','on');
 set(handles.cmdresetca,'Enable','off');

 theCA.gridsize = str2num(get(handles.gridsize,'String'));
 theCA.maxt = str2num(get(handles.timesteps,'String'));
 theCA.drawspeed = str2num(get(handles.drawspeed,'String'));
 theCA.initpopulation = str2num(get(handles.initpopulation,'String'));

© Stephen James

Page 47 of 52

 pauseca = 0;
 stats = classStatsReset(stats);
 theCA = classCASetDim(theCA);
 theCA = classCASetRun(theCA);
 theCA = classCARun(theCA,0,0);

 if (theCA.currenttimestep >= theCA.maxt)
 set(handles.cmdresetca,'Enable','on');
 set(handles.gridsize,'Enable','on');
 set(handles.initpopulation,'Enable','on');
 set(handles.cmdstopca,'Enable','off');
 set(handles.cmdrestartca,'Enable','off');
 end
end

function timesteps_Callback(hObject, eventdata, handles)
 global theCA;
 global figRun; handles = guihandles(figRun);

 theCA.maxt = str2num(get(handles.timesteps,'String'));
end

function initpopulation_Callback(hObject, eventdata, handles)
 global theCA;
 global figRun; handles = guihandles(figRun);

 theCA.initpopulation = str2num(get(handles.initpopulation,'String'));
end

function drawspeed_Callback(hObject, eventdata, handles)
 global theCA;
 global figRun; handles = guihandles(figRun);

 theCA.drawspeed = str2num(get(handles.drawspeed,'String'));
end

function setupscreen()
 global theCA;
 global figRun; handles = guihandles(figRun);

 set(handles.gridsize,'String',theCA.gridsize);
 set(handles.timesteps,'String',theCA.maxt);
 set(handles.currenttimestep,'String',theCA.currenttimestep);
 set(handles.initpopulation,'String',theCA.initpopulation);
 set(handles.currentpopulation,'String',theCA.currentalives);
 set(handles.drawspeed,'String',theCA.drawspeed);
end

function scrollright_Callback(hObject, eventdata, handles)
 global theCA; global pauseca; global stats; global figRun;

 if (pauseca == 0) cmdstopca_Callback(hObject, eventdata, handles); end
 for x = theCA.gridsize:-1:2
 tmpCells(:,x) = theCA.cells(:,x-1);
 end
 tmpCells(:,1) = theCA.cells(:,theCA.gridsize);

 theCA.cells = tmpCells;
 imgr = reshape(stats.colmap(theCA.cells+1,1),theCA.griddim);
 imgg = reshape(stats.colmap(theCA.cells+1,2),theCA.griddim);
 imgb = reshape(stats.colmap(theCA.cells+1,3),theCA.griddim);

 drawhandles = guihandles(figRun); axes(get(figRun,'CurrentAxes')); IMH =
image(cat(3,imgr,imgg,imgb));
end

function scrollleft_Callback(hObject, eventdata, handles)
 global theCA; global pauseca; global stats; global figRun;

 if (pauseca == 0) cmdstopca_Callback(hObject, eventdata, handles); end
 for x = 1:1:theCA.gridsize-1
 tmpCells(:,x) = theCA.cells(:,x+1);
 end
 tmpCells(:,theCA.gridsize) = theCA.cells(:,1);

 theCA.cells = tmpCells;
 imgr = reshape(stats.colmap(theCA.cells+1,1),theCA.griddim);
 imgg = reshape(stats.colmap(theCA.cells+1,2),theCA.griddim);
 imgb = reshape(stats.colmap(theCA.cells+1,3),theCA.griddim);

 drawhandles = guihandles(figRun); axes(get(figRun,'CurrentAxes')); IMH =
image(cat(3,imgr,imgg,imgb));
end

function scrolldown_Callback(hObject, eventdata, handles)

 global theCA; global pauseca; global stats; global figRun;

 if (pauseca == 0) cmdstopca_Callback(hObject, eventdata, handles); end
 for y = theCA.gridsize:-1:2
 tmpCells(y,:) = theCA.cells(y-1,:);
 end
 tmpCells(1,:) = theCA.cells(theCA.gridsize,:);

 theCA.cells = tmpCells;
 imgr = reshape(stats.colmap(theCA.cells+1,1),theCA.griddim);
 imgg = reshape(stats.colmap(theCA.cells+1,2),theCA.griddim);
 imgb = reshape(stats.colmap(theCA.cells+1,3),theCA.griddim);

 drawhandles = guihandles(figRun); axes(get(figRun,'CurrentAxes')); IMH =
image(cat(3,imgr,imgg,imgb));
end

function scrollup_Callback(hObject, eventdata, handles)
 global theCA; global pauseca; global stats; global figRun;

 if (pauseca == 0) cmdstopca_Callback(hObject, eventdata, handles); end
 for y = 1:1:theCA.gridsize-1
 tmpCells(y,:) = theCA.cells(y+1,:);
 end
 tmpCells(theCA.gridsize,:) = theCA.cells(1,:);

 theCA.cells = tmpCells;
 imgr = reshape(stats.colmap(theCA.cells+1,1),theCA.griddim);
 imgg = reshape(stats.colmap(theCA.cells+1,2),theCA.griddim);
 imgb = reshape(stats.colmap(theCA.cells+1,3),theCA.griddim);

 drawhandles = guihandles(figRun); axes(get(figRun,'CurrentAxes')); IMH =
image(cat(3,imgr,imgg,imgb));
end

function gridsize_Callback(hObject, eventdata, handles)
 global theCA; global pauseca; global stats;
 global figRun; handles = guihandles(figRun);

 if (pauseca == 0) cmdstopca_Callback(hObject, eventdata, handles); end

 tmpCA = theCA;
 tmpCA.gridsize = str2num(get(handles.gridsize,'String'));
 tmpCA = classCASetDim(tmpCA);

 tmpCA.cells = zeros(tmpCA.griddim);
 if (tmpCA.nodim == 2)
 if (tmpCA.gridsize > theCA.gridsize)
 gridblock = ceil((tmpCA.gridsize-theCA.gridsize)/2);
 tmpCA.cells(gridblock:1:gridblock+theCA.gridsize-1,gridblock:1:gridblock+theCA.gridsize-1) =
theCA.cells;
 else
 gridblock = ceil((theCA.gridsize-tmpCA.gridsize)/2);
 tmpCA.cells = theCA.cells(gridblock:1:gridblock+tmpCA.gridsize-
1,gridblock:1:gridblock+tmpCA.gridsize-1);
 end
 end

 theCA = tmpCA;
 if (theCA.nodim == 2)
 imgr = reshape(stats.colmap(theCA.cells+1,1),theCA.griddim);
 imgg = reshape(stats.colmap(theCA.cells+1,2),theCA.griddim);
 imgb = reshape(stats.colmap(theCA.cells+1,3),theCA.griddim);
 drawhandles = guihandles(figRun); axes(get(figRun,'CurrentAxes')); IMH =
image(cat(3,imgr,imgg,imgb));
 end
 end

SCREEN – CATSANALYSE

function varargout = catsAnalyse(varargin)
 gui_Singleton = 1;
 gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @caAnalyse_OpeningFcn, ...
 'gui_OutputFcn', @caAnalyse_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
 if nargin && ischar(varargin{1})
 if (strcmp(varargin{1},'setupscreen') == 1)
 setupscreen();
 else

 gui_State.gui_Callback = str2func(varargin{1});
 end
 end

 if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
 else
 gui_mainfcn(gui_State, varargin{:});
 end
end

function caAnalyse_OpeningFcn(hObject, eventdata, handles, varargin)
 handles.output = hObject;
 guidata(hObject, handles);
end

function varargout = caAnalyse_OutputFcn(hObject, eventdata, handles)
 varargout{1} = handles.output;
end

function showMinMax_Callback(hObject, eventdata, handles)
 global figAnalyse; handles = guihandles(figAnalyse);
 global stats; stats.showMinMax = get(handles.showMinMax,'Value');
end

function showRates_Callback(hObject, eventdata, handles)
 global figAnalyse; handles = guihandles(figAnalyse);
 global stats;

 stats.showRates = 1; stats.showParts = 0; stats.showFreq = 0;
 set(handles.showRates,'Value',1);

 stats.showL = get(handles.showL,'Value');
 stats.showLB = get(handles.showLB,'Value');
 stats.showLD = get(handles.showLD,'Value');
 stats.showLSA = get(handles.showLSA,'Value');
 stats.showLSD = get(handles.showLSD,'Value');

 stats.showP = get(handles.showP,'Value');
 stats.showBA = get(handles.showBA,'Value');
 stats.showBD = get(handles.showBD,'Value');
 stats.showCA = get(handles.showCA,'Value');
 stats.showCD = get(handles.showCD,'Value');
 stats.showSA = get(handles.showSA,'Value');
 stats.showSD = get(handles.showSD,'Value');
 stats.showE = get(handles.showE,'Value');;

 stats.showSpringy = get(handles.showSpringy,'Value');
end

function showParts_Callback(hObject, eventdata, handles)
 global figAnalyse; handles = guihandles(figAnalyse);
 global stats; stats.showRates = 0; stats.showParts = 1; stats.showFreq = 0;
 set(handles.showParts,'Value',1);
end

function showFreq_Callback(hObject, eventdata, handles)
 global figAnalyse; handles = guihandles(figAnalyse);
 global stats; stats.showRates = 0; stats.showParts = 0; stats.showFreq = 1;
 set(handles.showFreq,'Value',1);
 stats.showFull = get(handles.showFull,'Value');
 stats.showRecent = get(handles.showRecent,'Value');
 stats.showXFreq = get(handles.showXFreq,'Value');
 stats.showXLogFreq = get(handles.showXLogFreq,'Value');
 stats.showXPeriod = get(handles.showXPeriod,'Value');
 stats.showYAmp = get(handles.showYAmp,'Value');
 stats.showYPower = get(handles.showYPower,'Value');
 stats.showYLogPower = get(handles.showYLogPower,'Value');
end

function setupscreen()
 global stats;
 global figAnalyse; handles = guihandles(figAnalyse);

 set(handles.showL,'Value',stats.showL);
 set(handles.showLB,'Value',stats.showLB);
 set(handles.showLD,'Value',stats.showLD);
 set(handles.showLSA,'Value',stats.showLSA);
 set(handles.showLSD,'Value',stats.showLSD);

 set(handles.showP,'Value',stats.showP);
 set(handles.showBA,'Value',stats.showBA);
 set(handles.showBD,'Value',stats.showBD);
 set(handles.showCA,'Value',stats.showCA);
 set(handles.showCD,'Value',stats.showCD);

© Stephen James

Page 48 of 52

 set(handles.showSA,'Value',stats.showSA);
 set(handles.showSD,'Value',stats.showSD);
 set(handles.showE,'Value',stats.showE);

 set(handles.showMinMax,'Value',stats.showMinMax);
 set(handles.showSpringy,'Value',stats.showSpringy);
end

function saveimage_Callback(hObject, eventdata, handles)
 global fld; global figAnalyse; handles = guihandles(figAnalyse);

 a = actxcontrol('MSComDlg.CommonDialog.1',[0,600,5,5]);
 a.InitDir = fld;
 a.Filename = '';
 a.Filter = 'bmp';
 a.ShowSave;
 thefilename = cat(2,regexprep(a.Filename,'.bmp',''),'.bmp');
 release(a);

 calcaxes = get(figAnalyse,'CurrentAxes');
 F = getframe(figAnalyse,[5,5,555,485]);
 [X, Map] = frame2im(F);
 imwrite(X, thefilename, 'bmp');
end

SCREEN – CATSCREATE

function varargout = catsCreate(varargin)
 gui_Singleton = 1;
 gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @catsCreate_OpeningFcn, ...
 'gui_OutputFcn', @catsCreate_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
 if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
 end

 if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
 else
 gui_mainfcn(gui_State, varargin{:});
 end
end

function catsCreate_OpeningFcn(hObject, eventdata, handles, varargin)
 handles.output = hObject;
 guidata(hObject, handles);
end

function varargout = catsCreate_OutputFcn(hObject, eventdata, handles)
 varargout{1} = handles.output;
end

function cmdcreaterandom_Callback(hObject, eventdata, handles)
 global figCreate; handles = guihandles(figCreate);
 createCAByGA(handles,'',0)
end

function cmdcreatecomplex_Callback(hObject, eventdata, handles)
 global figCreate; handles = guihandles(figCreate);

 probmethod = get(handles.probmethod,'Value');
 if probmethod == 1
 createCAByGA(handles,'Complex',1)
 else
 createCAByGA(handles,'Complex',0)
 end
end

function cmdcreatechaos_Callback(hObject, eventdata, handles)
 global figCreate; handles = guihandles(figCreate);

 probmethod = get(handles.probmethod,'Value');
 if probmethod == 1
 createCAByGA(handles,'Chaotic',1)
 else
 createCAByGA(handles,'Chaotic',0)
 end
end

function cmdcreateorder_Callback(hObject, eventdata, handles)
 global figCreate; handles = guihandles(figCreate);

 probmethod = get(handles.probmethod,'Value');
 if probmethod == 1
 createCAByGA(handles,'Ordered',1)
 else
 createCAByGA(handles,'Ordered',0)
 end
end

%--------------------------
% CREATE CA
%--------------------------
function createCAByGA(handles,whichSort,probmethod)
 % Define Constants
 %-----------------
 global fld; global theCA; global pauseca; global stats;
 global figMain; global figAnalyse;

 createdim = str2num(get(handles.nodims,'String'));
 createsta = str2num(get(handles.nostates,'String'));
 createnei = str2num(get(handles.noneighbours,'String'));
 nngenerations = str2num(get(handles.nngenerations,'String'));
 nngenerations = str2num(get(handles.nngenerations,'String'));
 nninitlambda = str2num(get(handles.nninitlambda,'String'));
 nnpopulation = str2num(get(handles.nnpopulation,'String'));
 nnkeepalive = str2num(get(handles.nnkeepalive,'String'));
 nnmutate = str2num(get(handles.nnmutate,'String'));
 targetonlambda = (get(handles.targetonlambda,'Value'));
 targetonpower = (get(handles.targetonpower,'Value'));
 targetonbirthrate = (get(handles.targetonbirthrate,'Value'));
 targetonpopulation = (get(handles.targetonpopulation,'Value'));
 targetonsa = (get(handles.targetonsa,'Value'));
 targetlambda = str2num(get(handles.targetlambda,'String'));
 targetpower = str2num(get(handles.targetpower,'String'));
 targetbirthrate = str2num(get(handles.targetbirthrate,'String'));
 targetpopulation = str2num(get(handles.targetpopulation,'String'));
 targetsa = str2num(get(handles.targetsa,'String'));
 testgridsize = str2num(get(handles.testgridsize,'String'));
 testtimesteps = str2num(get(handles.testtimesteps,'String'));
 testinitpopulation = str2num(get(handles.testinitpopulation,'String'));

 dieifalone = get(handles.dieifalone,'Value');
 symetrical = get(handles.symetrical,'Value');

 for popcounter = 1:1:nnpopulation
 eval(cat(2,'popCA',num2str(popcounter),' =
classCA(',num2str(createdim),',',num2str(createsta),',',num2str(createnei),');'));
 end

 % Create CA
 %-----------------
 isfound = 0; gencounter = 0; changecount = 0; classcount = 0;
 bestca = 0; bestscore = -100;

 % Initialise Rulesets
 %-----------------------
 for popcounter = 1:1:nnpopulation
 eval(cat(2,'tmpCA = popCA',num2str(popcounter),';'));
 tmpCA.rules = zeros(1,tmpCA.norules);
 if (nninitlambda == 1)
 tmplambda = rand() * 0.5;
 else
 tmplambda = nninitlambda;
 end

 if (symetrical == 1)
 nosym = 4;
 if (tmpCA.nodim == 3) nosym = 7; end
 for j = 1:1:ceil(((tmpCA.norules*tmplambda)/nosym))
 tmprule = ceil(rand() * (tmpCA.norules-1));
 while(tmpCA.rules(1,tmprule) ~= 0) tmprule = ceil(rand() * (tmpCA.norules-1)); end
 tmpCA.rules(1,tmprule) = ceil(rand()*(theCA.nostates-1));
 tmpCA.rules(1,tmpCA.staterot(tmprule)) = tmpCA.rules(1,tmprule);
 tmpCA.rules(1,tmpCA.staterot(tmpCA.staterot(tmprule))) = tmpCA.rules(1,tmprule);
 tmpCA.rules(1,tmpCA.staterot(tmpCA.staterot(tmpCA.staterot(tmprule)))) =
tmpCA.rules(1,tmprule);
 if(tmpCA.nodim == 3)
 tmpCA.rules(1,tmpCA.staterotz(tmprule)) = tmpCA.rules(1,tmprule);
 tmpCA.rules(1,tmpCA.staterotz(tmpCA.staterotz(tmprule))) = tmpCA.rules(1,tmprule);
 tmpCA.rules(1,tmpCA.staterotz(tmpCA.staterotz(tmpCA.staterotz(tmprule)))) =
tmpCA.rules(1,tmprule);
 end
 end

 else
 for j = 1:1:ceil(tmpCA.norules*tmplambda)
 tmprule = ceil(rand() * (tmpCA.norules-1));
 while(tmpCA.rules(1,tmprule) ~= 0) tmprule = ceil(rand() * (tmpCA.norules-1)); end
 tmpCA.rules(1,tmprule) = ceil(rand()*(theCA.nostates-1));
 end
 end
 if (dieifalone == 1) tmpCA.rules(1,1:tmpCA.nostates) = 0; end
 tmpCA = classCASetValues(tmpCA);
 eval(cat(2,'popCA',num2str(popcounter),' = tmpCA;'));
 end

 if isempty(whichSort)
 isfound = 1;
 theCA = popCA1;
 if ishandle(figMain) catsMain('setupscreen'); end
 end

 % For Each GENERATION
 %--------------------
 while (isfound == 0) && (gencounter < nngenerations)
 gencounter = gencounter + 1;

 % Test Rulesets
 %-----------------------
 popcounter = 0; classcount = 0;
 while (isfound == 0) && (popcounter < nnpopulation)
 set(handles.createmsg,'String',cat(2,'creating -
',num2str(gencounter,'%3.0f'),':',num2str(nngenerations),'
',num2str(popcounter,'%3.0f'),':',num2str(nnpopulation))); drawnow;
 popcounter = popcounter + 1;
 eval(cat(2,'tmpCA = popCA',num2str(popcounter),';'));

 % Test CA by Running it
 %-----------------------
 if probmethod == 0
 pauseca = 0;
 if (tmpCA.nodim == 2)
 tmpCA.gridsize = 50;
 tmpCA.maxt = 60;
 else
 tmpCA.gridsize = 30;
 tmpCA.maxt = 60;
 end
 tmpCA.initpopulation = testinitpopulation;

 stats = classStatsReset(stats);
 tmpCA = classCAInitCells(tmpCA);
 tmpCA = classCASetRun(tmpCA);
 tmpCA = classCARun(tmpCA,1,1);
 output = [tmpCA.class]
 tmpCA.score = tmpCA.cscore^2;

 if (tmpCA.class == whichSort)
 isfound = 1; classcount = classcount + 1; tmpCA.score = 0;
 if (strcmp(whichSort,'Complex')==1)
 tmpCA.gridsize = testgridsize;
 tmpCA.maxt = testtimesteps;
 tmpCA.initpopulation = testinitpopulation;

 pauseca = 0;
 stats = classStatsReset(stats);
 tmpCA = classCASetDim(tmpCA);
 tmpCA = classCASetRun(tmpCA);
 tmpCA = classCARun(tmpCA,1,1);
 tmpCA.score = tmpCA.cscore + 1;
 if (strcmp(tmpCA.class,'Complex') == 0) isfound = 0; end
 end
 end
 end

 if ((targetonlambda == 1) && (abs(tmpCA.lambda-targetlambda)/targetlambda > 0.1)) isfound = 0;
end
 if ((targetonsa == 1) && (abs(mean(stats.SA(ceil(tmpCA.maxt/2):1:tmpCA.maxt))-
targetsa)/targetsa > 0.1)) isfound = 0; end
 if ((targetonbirthrate == 1) && (abs(tmpCA.lambdab-targetbirthrate)/targetbirthrate > 0.1)) isfound
= 0; end
 if ((targetonpopulation == 1) && (targetpopulation < 1) &&
(abs(mean(stats.P((ceil(tmpCA.maxt/4)*2):1:(ceil(tmpCA.maxt/4)*3)))-targetpopulation)/targetpopulation >
0.1)) isfound = 0; end
 if ((targetonpopulation == 1) && (targetpopulation < 1) &&
(abs(mean(stats.P((ceil(tmpCA.maxt/4)*3):1:(ceil(tmpCA.maxt/4)*4)))-targetpopulation)/targetpopulation >
0.1)) isfound = 0; end

© Stephen James

Page 49 of 52

 if ((targetonpopulation == 1) && (targetpopulation == 1) &&
(abs(mean(stats.P((ceil(tmpCA.maxt/4)*2):1:(ceil(tmpCA.maxt/4)*3)))-
mean(stats.P((ceil(tmpCA.maxt/4)*3):1:(ceil(tmpCA.maxt/4)*4)))) > 0.2)) isfound = 0; end
 if ((targetonpower == 1) && (abs(tmpCA.maxpower-targetpower)/targetpower > 0.1)) isfound = 0;
end

 if (targetonlambda == 1) tmpCA.score = tmpCA.score - (abs(tmpCA.lambda-
targetlambda)/targetlambda); end
 if (targetonsa == 1) tmpCA.score = tmpCA.score -
(abs(mean(stats.SA(ceil(tmpCA.maxt/2):1:tmpCA.maxt))-targetsa)/targetsa); end
 if (targetonbirthrate == 1) tmpCA.score = tmpCA.score - (abs(tmpCA.lambdab-
targetbirthrate)/targetonbirthrate); end
 if (targetonpopulation == 1) && (targetpopulation < 1) tmpCA.score = tmpCA.score -
(abs(mean(stats.P((ceil(tmpCA.maxt/4)*2):1:(ceil(tmpCA.maxt/4)*3)))-targetpopulation)/targetpopulation);
end
 if (targetonpopulation == 1) && (targetpopulation < 1) tmpCA.score = tmpCA.score -
(abs(mean(stats.P((ceil(tmpCA.maxt/4)*3):1:(ceil(tmpCA.maxt/4)*4)))-targetpopulation)/targetpopulation);
end
 if (targetonpopulation == 1) && (targetpopulation == 1) tmpCA.score = tmpCA.score -
(abs(mean(stats.P((ceil(tmpCA.maxt/4)*2):1:(ceil(tmpCA.maxt/4)*3)))-
mean(stats.P((ceil(tmpCA.maxt/4)*3):1:(ceil(tmpCA.maxt/4)*4))))); end
 if (targetonpower == 1) tmpCA.score = tmpCA.score - (abs(tmpCA.maxpower -
targetpower)/targetpower); end

 if (tmpCA.score > bestscore) || (isfound == 1)
 bestscore = tmpCA.score; bestca = popcounter;
 set(handles.currentmsg,'String',cat(2,'Gen:',num2str(gencounter),',
Pop:',num2str(popcounter,'%1.0f\n'),...
 'Score: ',num2str(bestscore,'%1.2f\n'),...
 'CScore: ',num2str(tmpCA.cscore,'%1.2f\n'), ...
 'MaxPower: ',num2str(tmpCA.maxpower,'%1.2f\n'),...
 'Lamda: ',num2str(tmpCA.lambda,'%1.2f\n'),...
 'Lamda B: ',num2str(tmpCA.lambdab,'%1.2f\n'),...
 'Class: ',tmpCA.class)); drawnow;
 theCA = tmpCA;
 if ishandle(figMain) catsMain('setupscreen'); end
 end
 eval(cat(2,'popCA',num2str(popcounter),' = tmpCA;'));
 end
 %-----------------------
 % Genetically Mutate Rulesets
 %----------------------------
 popcounter = 0; changecount = 0;
 while (isfound == 0) && (popcounter < nnpopulation)
 popcounter = popcounter + 1; mate = popcounter;
 while (mate == popcounter) mate = floor(rand()*nnpopulation)+1; end
 eval(cat(2,'tmpCA = popCA',num2str(popcounter),';'));
 eval(cat(2,'mateCA = popCA',num2str(mate),';'));

 if ((tmpCA.score < mateCA.score) && (popcounter ~= bestca))
 tmpCA.rules = mateCA.rules;
 changecount = changecount + 1;
 % --- SYMMETRICAL ---
 if (symetrical == 1)
 nosym = 4;
 if (tmpCA.nodim == 3) nosym = 7; end
 if (nnmutate >= 1)
 noofmutations = nnmutate;
 else
 muterate = rand * nnmutate;
 noofmutations = ceil((tmpCA.norules*muterate)/nosym);
 end
 for j = 1:1:noofmutations
 tmprule = ceil(rand() * (tmpCA.norules-1));
 if (targetonbirthrate == 1) && (abs(targetbirthrate - tmpCA.lambdab) > 0.01)
 if (targetbirthrate > tmpCA.lambdab)
 while(tmpCA.rules(1,tmprule) == 1) || (rand() < 0.25) tmprule = ceil(rand() *
(tmpCA.norules-1)); end
 else
 while(tmpCA.rules(1,tmprule) == 0) || (rand() < 0.25) tmprule = ceil(rand() *
(tmpCA.norules-1)); end
 end
 elseif (targetlambda == 1) && (abs(targetlambda - tmpCA.lambda) > 0.01)
 if (targetlambda > tmpCA.lambda)
 while(tmpCA.rules(1,tmprule) == 1) || (rand() < 0.25) tmprule = ceil(rand() *
(tmpCA.norules-1)); end
 else
 while(tmpCA.rules(1,tmprule) == 0) || (rand() < 0.25) tmprule = ceil(rand() *
(tmpCA.norules-1)); end
 end
 end
 tmpCA.rules(1,tmprule) = abs(1-tmpCA.rules(1,tmprule));
 tmpCA.rules(1,tmpCA.staterot(tmprule)) = tmpCA.rules(tmprule);
 tmpCA.rules(1,tmpCA.staterot(tmpCA.staterot(tmprule))) = tmpCA.rules(1,tmprule);

 tmpCA.rules(1,tmpCA.staterot(tmpCA.staterot(tmpCA.staterot(tmprule)))) =
tmpCA.rules(1,tmprule);
 if(tmpCA.nodim == 3)
 tmpCA.rules(1,tmpCA.staterotz(tmprule)) = tmpCA.rules(tmprule);
 tmpCA.rules(1,tmpCA.staterotz(tmpCA.staterotz(tmprule))) = tmpCA.rules(tmprule);
 tmpCA.rules(1,tmpCA.staterotz(tmpCA.staterotz(tmpCA.staterotz(tmprule)))) =
tmpCA.rules(tmprule);
 end
 tmpCA = classCASetLambda(tmpCA);
 end
 else
 % --- NORMAL ---
 for j=1:1:tmpCA.norules
 if(rand()<nnmutate) tmpCA.rules(1,j) = abs(1-tmpCA.rules(1,j)); end
 end
 end
 % --- DIE IF ALONE ---
 if (dieifalone == 1) tmpCA.rules(1,1:tmpCA.nostates) = 0; end
 tmpCA = classCASetLambda(tmpCA);
 eval(cat(2,'popCA',num2str(popcounter),' = tmpCA;'));
 end
 end
 %-----------------------
 end

 if (isfound == 1)
 set(handles.createmsg,'String','Successful'); drawnow;
 else
 set(handles.createmsg,'String','Failed'); drawnow;
 end
end

function[y] = bitcount(x,size)
 y = bitand(x,1)/1 + ...
 bitand(x,2)/2 + ...
 bitand(x,4)/4 + ...
 bitand(x,8)/8 + ...
 bitand(x,16)/16;
 if (size == 9)
 y = y + ...
 bitand(x,32)/32 + ...
 bitand(x,64)/64 + ...
 bitand(x,128)/128 + ...
 bitand(x,256)/256 + ...
 bitand(x,512)/512;
 end
end

SCREEN – CATSFILE

function varargout = catsFiles(varargin)
 gui_Singleton = 1;
 gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @catsFiles_OpeningFcn, ...
 'gui_OutputFcn', @catsFiles_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
 if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
 end

 if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
 else
 gui_mainfcn(gui_State, varargin{:});
 end
end

function catsFiles_OpeningFcn(hObject, eventdata, handles, varargin)
 handles.output = hObject;
 guidata(hObject, handles);
end

function varargout = catsFiles_OutputFcn(hObject, eventdata, handles)
 varargout{1} = handles.output;
end

function cmdimportcmp_Callback(hObject, eventdata, handles)
 global theCA; global fld; global figMain;

 a = actxcontrol('MSComDlg.CommonDialog.1');

 a.InitDir = fld;
 a.Filename = '';
 a.Filter = 'csv';
 a.ShowOpen;
 filename = cat(2,regexprep(a.Filename,'.csv',''),'.csv');
 release(a);

 fid = fopen(filename,'r');
 i = 1;
 while (feof(fid) == 0)
 line = fgetl(fid);
 [a rem] = strtok(line,',');
 [b rem] = strtok(rem,',');
 theCA.rules(1,i) = str2num(a);
 theCA.rules(1,i+1) = str2num(b);
 i = i + 2;
 end
 fclose(fid);
 theCA = classCASetValues(theCA);
 theCA = classCASetRun(theCA);
 if ishandle(figMain) catsMain('setupscreen'); end
end

function loadrowno_CreateFcn(hObject, eventdata, handles)
 if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
 end
end

function cmdsavecmp_Callback(hObject, eventdata, handles)
 global theCA; global fld;

 a = actxcontrol('MSComDlg.CommonDialog.1');
 a.InitDir = fld;
 a.Filename = '';
 a.Filter = 'csv';
 a.ShowSave;
 filename = cat(2,regexprep(a.Filename,'.csv',''),'.csv');
 release(a);

 fid = fopen(filename,'w');
 for i = 1:2:size(theCA.rules,2)
 fprintf(fid,'%1d,',theCA.rules(1,i));
 fprintf(fid,'%1d\n',theCA.rules(1,i+1));
 end
 fclose(fid);
end

CLASS CA

function[theCA] = classCA(nodim, nostates, noneighbours)
 if exist('nodim')
 theCA.nodim = nodim;
 theCA.nostates = nostates;
 theCA.noneighbours = noneighbours;
 else
 theCA.nodim = 2;
 theCA.nostates = 2;
 theCA.noneighbours = 9;
 end
 theCA.norules = theCA.nostates ^ theCA.noneighbours;
 theCA.symettrical = 1;
 theCA.dieifalone = 1;
 theCA.rules = 1;
 theCA.cells = [];
 theCA.gridsize = 50;
 theCA.griddim = [];
 theCA.gridsplit = 5;
 theCA.nocells = 0;
 theCA.maxt = 100;
 theCA.initpopulation = 0.25;
 theCA.drawspeed = 1;

 theCA.lambda = 0; % Lambda
 theCA.lambdab = 0; % Lambda Birth
 theCA.lambdad = 0; % Lambda Death

 theCA.name = 'Unnamed';
 theCA.filename = '';
 theCA.class = 'Unknown';
 theCA.score = 0;
 theCA.cscore = 0;

© Stephen James

Page 50 of 52

 theCA.ccount = 0;
 theCA.slope = 0;
 theCA.maxpower = 0;
 theCA.staterot = [];
 theCA.staterotz = [];
 if (theCA.noneighbours == 9)
 theCA.symcells = [1 3 7 11 15 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 97
99 101 103 105 107 109 111 113 115 117 119 121 123 125 127 161 163 165 167 169 171 173 175 177
179 181 183 185 187 189 191 225 227 229 231 233 235 237 239 241 243 245 247 249 251 253 255 481
483 487 491 495 511];
 else
 theCA.symcells = [1 3 7 15 31];
 end

 theCA = classCASetDim(theCA);
 theCA = classCASetRot(theCA);
 theCA = classCASetRun(theCA);
end

CLASS CA – RUN

function[theCA] = catsRunCA(theCA,forcenodraw,forcecalc)
 global figRun; global figAnalyse; global pauseca; global stats; global notes;

 warning off all

 if (theCA.nodim == 3)
 splitsize = theCA.gridsize;
 x = 1:splitsize;
 xplus = [2:splitsize 1];
 xplus2 = [3:splitsize 1 2];
 xminus = [splitsize 1:splitsize-1];
 xminus2 = [splitsize-1 splitsize 1:splitsize-2];
 y = x; yplus = xplus; yplus2 = xplus2; yminus = xminus; yminus2 = xminus2;
 z = x; zplus = xplus; zplus2 = xplus2; zminus = xminus; zminus2 = xminus2;
 else
 splitsize = theCA.gridsize;
 x = 1:splitsize;
 xplus = [2:splitsize 1];
 xplus2 = [3:splitsize 1 2];
 xminus = [splitsize 1:splitsize-1];
 xminus2 = [splitsize-1 splitsize 1:splitsize-2];
 y = x; yplus = xplus; yplus2 = xplus2; yminus = xminus; yminus2 = xminus2;
 z = x; zplus = xplus; zplus2 = xplus2; zminus = xminus; zminus2 = xminus2;
 end
 cellages = theCA.cells;
 ages = 0;
 nolives = 0;
 tmp3 = 0;
 localsize = 40;

 drawRun = ishandle(figRun);
 drawAnalyse = ishandle(figAnalyse);
 calcit = drawAnalyse;
 if (forcenodraw > 0) drawRun = 0; drawAnalyse = 0; end
 if (forcecalc > 0) calcit = forcecalc; end

 if (drawRun == 1)
 drawhandles = guihandles(figRun); axes(get(figRun,'CurrentAxes'));
 if (theCA.nodim == 2)
 imgr = reshape(stats.colmap(theCA.cells+1,1),theCA.griddim);
 imgg = reshape(stats.colmap(theCA.cells+1,2),theCA.griddim);
 imgb = reshape(stats.colmap(theCA.cells+1,3),theCA.griddim);
 IMH = image(cat(3,imgr,imgg,imgb));
 elseif (theCA.nodim == 3)
 runaxes = get(figRun,'CurrentAxes'); cla(runaxes);
 axis(runaxes, [0 theCA.gridsize+1 0 theCA.gridsize+1 0 theCA.gridsize+1]);
 colour = summer(theCA.gridsize);
 FVb.vertices = []; FVb.faces = [];
 %cubeface = [1 2 3 4; 4 3 7 8; 1 5 8 4; 2 6 7 3; 1 2 6 5; 5 6 7 8];
 cubeface = [1 2 3 4; 4 3 7 8; 1 5 8 4; 2 6 7 3; 1 2 6 5; 5 6 7 8];
 for ypos = 1:theCA.gridsize
 for xpos = 1:theCA.gridsize
 xs=[xpos,xpos+1];
 ys=[ypos,ypos+1];
 FVb.vertices=[FVb.vertices; [xs([1 2 2 1 1 2 2 1]) ; ys([1 1 2 2 1 1 2 2]) ; [1 1 1 1 2 2 2 2]]'];
 end
 end

 pah = [];
 for zpos = 1:theCA.gridsize
 FV(zpos).vertices = FVb.vertices;

 FV(zpos).vertices(:,3) = FV(zpos).vertices(:,3) + (zpos-1);
 FV(zpos).facecolor = colour(zpos,:);
 pah(zpos) = patch(FV(zpos));
 end
 end
 end
 if (drawAnalyse == 1) calchandles = guihandles(figAnalyse); calcaxes = get(figAnalyse,'CurrentAxes'); end
 if (calcit == 1)
 theCA.class = 'Unknown';
 end

 %-------
 % RUN CA
 %-------
 i = theCA.currenttimestep;
 while i <= theCA.maxt
 if (ishandle(figAnalyse) == 0) drawAnalyse = 0; end
 if(pauseca == 1)
 theCA.currenttimestep = i;
 i = theCA.maxt+1;
 else
 if (calcit > 0) fullstates = ones(theCA.griddim); end

 % CALCULATE NEXT CELLS
 %---------------------
 oldcells = theCA.cells;
 if (theCA.noneighbours == 9)
 states(x,y) = 1 + ...
 ((theCA.nostates^0) * theCA.cells(x,y)) + ...
 ((theCA.nostates^1) * theCA.cells(xplus,y)) + ...
 ((theCA.nostates^2) * theCA.cells(x,yplus)) + ...
 ((theCA.nostates^3) * theCA.cells(xminus,y)) + ...
 ((theCA.nostates^4) * theCA.cells(x,yminus)) + ...
 ((theCA.nostates^5) * theCA.cells(xplus,yminus)) + ...
 ((theCA.nostates^6) * theCA.cells(xplus,yplus)) + ...
 ((theCA.nostates^7) * theCA.cells(xminus,yplus)) + ...
 ((theCA.nostates^8) * theCA.cells(xminus,yminus));

 theCA.cells(x,y) = theCA.rules(states(x,y));
 if (calcit > 0) fullstates(x,y) = states(x,y); end
 elseif (theCA.noneighbours == 5)
 states(x,y) = 1 + ...
 ((theCA.nostates^0) * theCA.cells(x,y)) + ...
 ((theCA.nostates^1) * theCA.cells(xplus,y)) + ...
 ((theCA.nostates^2) * theCA.cells(x,yplus)) + ...
 ((theCA.nostates^3) * theCA.cells(xminus,y)) + ...
 ((theCA.nostates^4) * theCA.cells(x,yminus));

 theCA.cells(x,y) = theCA.rules(states(x,y));
 if (calcit > 0) fullstates(x,y) = states(x,y); end
 elseif (theCA.noneighbours == 7)
 if (i > 1)
 states(x,y,z) = 1 + ...
 ((theCA.nostates^0) * theCA.cells(x,y,z)) + ...
 ((theCA.nostates^1) * theCA.cells(xplus,y,z)) + ...
 ((theCA.nostates^2) * theCA.cells(x,yplus,z)) + ...
 ((theCA.nostates^3) * theCA.cells(xminus,y,z)) + ...
 ((theCA.nostates^4) * theCA.cells(x,yminus,z)) + ...
 ((theCA.nostates^5) * theCA.cells(x,y,zminus)) + ...
 ((theCA.nostates^6) * theCA.cells(x,y,zplus));

 theCA.cells(x,y,z) = theCA.rules(states(x,y,z));
 if (calcit > 0) fullstates(x,y,z) = states(x,y,z); end
 end
 end

 % CALCULATE STATS
 %----------------
 stats.A(i) = sum(sum(sum(theCA.cells~=0)));
 if (calcit > 0)
 stats.P(i) = stats.A(i) / theCA.nocells;
 if (calcit == 1)
 stats.D(i) = theCA.nocells - stats.A(i);
 stats.B(i) = sum(sum(sum(oldcells==0 & theCA.cells~=0)));
 stats.C(i) = sum(sum(sum(oldcells~=0 & theCA.cells==0)));
 stats.BA(i) = stats.B(i) / stats.A(i);
 if (i > 1) stats.BD(i) = stats.B(i) / stats.D(i-1); else stats.BD(i) = 0; end
 if (i > 1) stats.CA(i) = stats.C(i) / stats.A(i-1); else stats.CA(i) = 0; end
 %stats.BD(i) = stats.B(i) / stats.D(i);
 %stats.CD(i) = stats.C(i) / stats.D(i);
 stats.BD(i) = stats.B(i) / theCA.nocells;
 stats.CD(i) = stats.C(i) / theCA.nocells;
 stats.SA(i) = sum(sum(sum(oldcells~=0 & theCA.cells~=0))) / stats.A(i);
 stats.SD(i) = sum(sum(sum(oldcells==0 & theCA.cells==0))) / stats.D(i);

 % CALCULATE ENTROPY
 S = 0;
 if (stats.showE == 1)
 Qn = sum(hist(fullstates,theCA.norules)') / theCA.nocells;
 tQn = Qn.*log(Qn);
 tQn(isnan(tQn)) = 0;
 S = 0 - sum(tQn);
 end
 stats.E(i) = S;

 % CALCULATE FULL SLOPE
 Y1 = []; Y = []; N = 0; N1 = 0; slope = 0; ydata = 0; xdata = 0; y1data = 0; x1data = 0;
d1data = 0; theCA.slope = 0;
 if (i > 1)
 Y = fft(stats.P(1:1:i),i); N = length(Y); Y(1) = []; nyquist = 1/2;
 ampl = abs(Y(1:N/2));
 power = ampl.^2;
 freq = (1:N/2)/(N/2)*nyquist;
 period = 1 ./ freq;
 theCA.maxpower = max(power);
 freq1 = freq; ampl1 = ampl; power1 = power; period1 = period;
 end
 end

 % CALCULATE CLASS
 if (i > localsize)
 % CALCULATE LOCAL SLOPE
 Y1 = fft(stats.P((i-localsize):1:i)); N1 = length(Y1); Y1(1) = []; nyquist1 = 1/2;
 ampl1 = abs(Y1(1:N1/2));
 power1 = ampl1.^2;
 freq1 = (1:N1/2)/(N1/2)*nyquist1;
 period1 = 1 ./ freq1;
 p = polyfit(period1,power1,1); d1data = polyval(p,period1);
 theCA.slope = ((d1data(1) - d1data(2))/(period1(1) - period1(2)))*1000;

 if (theCA.nodim == 2) isOrder = (stats.A(i) / theCA.nocells) < (theCA.lambda / 2); end
 if (theCA.nodim == 3) isOrder = ((stats.A(i)) / theCA.nocells) < (theCA.lambda / 2); end
 isChaos = (sum(d1data) > 0.0001);
 if (isChaos == 1) theCA.class = 'Chaotic'; end
 if (isOrder == 1) theCA.class = 'Ordered'; end
 %if (isOrder == 1) && (isChaos == 1) theCA.class = 'Complex'; theCA.ccount = theCA.ccount
+ 1; end
 if (isOrder == 1) && (isChaos == 1) && (theCA.slope > 0.01) theCA.class = 'Complex';
theCA.cscore = i / theCA.maxt; end
 %theCA.cscore = theCA.ccount / (i-localsize);
 end
 end

 % DRAW STATS
 %-----------
 if (drawAnalyse > 0)
 if (theCA.drawspeed <= 1) || (mod(i,theCA.drawspeed) == 0)

 set(calchandles.txtclass,'String',cat(2,num2str(theCA.cscore,'%1.3f\n'),theCA.class));

 % DRAW FREQ GRAPHS
 %----------------

 if (stats.showFreq == 1)
 cla(calcaxes); set(calcaxes,'NextPlot','add');
 if (i > 5)
 if (stats.showXFreq == 1) xlabel(calcaxes,'Frequency'); xdata = freq; x1data = freq1; end
 if (stats.showXLogFreq == 1) xlabel(calcaxes,'Log(Frequency)'); xdata = log(freq);
x1data = log(freq1); end
 if (stats.showXPeriod == 1) xlabel(calcaxes,'Period (1/Frequency)'); xdata = period;
x1data = period1; end
 if (stats.showYAmp == 1) ylabel(calcaxes,'Amplitude'); ydata = ampl; y1data = ampl1;
end
 if (stats.showYPower == 1) ylabel(calcaxes,'Power'); ydata = power; y1data = power1;
end
 if (stats.showYLogPower == 1) ylabel(calcaxes,'Log(Power)'); ydata = log(power); y1data
= log(power1); end
 p = polyfit(xdata,ydata,1); ddata = polyval(p,xdata);
 p = polyfit(x1data,y1data,1); d1data = polyval(p,x1data);

 minx = 0; maxx = 0; miny = 0; maxy = 0;
 if (stats.showFull == 1) minx = min(xdata); maxx = max(xdata); miny = min(ydata);
maxy = max(ydata); end;
 if (stats.showRecent == 1) && (min(x1data) < minx) minx = min(x1data); end
 if (stats.showRecent == 1) &&(max(x1data) > maxx) maxx = max(x1data); end
 if (stats.showRecent == 1) &&(min(y1data) < miny) miny = min(y1data); end
 if (stats.showRecent == 1) &&(max(y1data) > maxy) maxy = max(y1data); end
 if (stats.showXLogFreq == 1) && (stats.showYLogPower == 1) minx = -7.5; maxx = 2.5;
miny = -25; maxy = 5; end
 if (stats.showXLogFreq == 1) && (stats.showYPower == 1) miny = 0; maxy = 0.1; end

© Stephen James

Page 51 of 52

 if (stats.showXPeriod == 1) && (stats.showYAmp == 1) minx = 0; miny = 0; maxy =
ceil(i/50); end
 if (stats.showXPeriod == 1) && (stats.showYAmp == 1) && (stats.showFull == 0) maxy =
0.1; end
 if (stats.showXPeriod == 1) && (stats.showYPower == 1) minx = 0; miny = 0; maxy =
ceil(i/10); end
 if (stats.showXPeriod == 1) && (stats.showYPower == 1) && (stats.showFull == 0) maxy
= 0.01; end
 if (stats.showXFreq == 1) minx = 0; maxx = 0.5; miny = 0; maxy = 1; end
 if (stats.showXFreq == 1) && (stats.showFull == 0) maxy = 0.1; end

 if (stats.showYLogPower == 1) plot(calcaxes,[minx-5 maxx+1],[maxx+1 minx-5],'b--');
end;
 if (stats.showYLogPower == 1) plot(calcaxes,[minx+1 maxx+1],[maxx+1+((maxx-
minx)/2) minx+1],'b--'); end;
 if (stats.showFull == 1) plot(calcaxes,xdata,ydata,'g-','LineWidth',2);
plot(calcaxes,xdata,ddata,'r-','LineWidth',2); end
 if (stats.showRecent == 1) plot(calcaxes,x1data,y1data,'c-','LineWidth',2);
plot(calcaxes,x1data,d1data,'m-','LineWidth',2); end
 axis(calcaxes,'normal'); axis(calcaxes,[minx maxx miny maxy]);
 end

 % DRAW PARTS TIME DIAGRAM
 elseif (stats.showParts == 1)
 xlabel(calcaxes,'Part'); ylabel(calcaxes,'Time');
 cla(calcaxes); set(calcaxes,'NextPlot','replace');
 if (i == 1)
 axis(calcaxes,'normal'); axis(calcaxes,[1 theCA.nocells 0 theCA.maxt]);
 prtsmap = ones(theCA.maxt,theCA.nocells);
 axes(calcaxes);
 PRTS = image(cat(3,prtsmap,prtsmap,prtsmap));
 drawnow;
 end
 for j = 0:1:theCA.gridsize-1
 for k = 1:1:theCA.gridsize
 prtsmap(i,(j*theCA.gridsize)+k) = 1-theCA.cells(j+1,k);
 end
 end
 set(PRTS,'CData',cat(3,prtsmap,prtsmap,prtsmap));

 % DRAW RATES STATISTICS
 elseif (stats.showRates == 1)
 set(calchandles.txtba,'String',num2str(stats.BA(i),'%1.3f'));
 set(calchandles.txtbd,'String',num2str(stats.BD(i),'%1.3f'));
 set(calchandles.txtca,'String',num2str(stats.CA(i),'%1.3f'));
 set(calchandles.txtcd,'String',num2str(stats.CD(i),'%1.3f'));
 set(calchandles.txtsa,'String',num2str(stats.SA(i),'%1.3f'));
 set(calchandles.txtsd,'String',num2str(stats.SD(i),'%1.3f'));
 set(calchandles.txtp,'String',num2str(stats.P(i),'%1.3f'));
 set(calchandles.txte,'String',num2str(stats.E(i),'%1.3f'));

 cla(calcaxes); set(calcaxes,'NextPlot','add');
 if (stats.showSpringy == 1) axis(calcaxes,'normal'); axis(calcaxes,[0 i 0 1]); end
 if (stats.showSpringy == 0) axis(calcaxes,'normal'); axis(calcaxes,[0 theCA.maxt 0 1]); end
 xlabel(calcaxes,'Time');
 % PERCENTAGES
 if (stats.showMinMax == 0)
 ylabel(calcaxes,'Rate');
 showbit = 1:1:i;
 if (stats.showL == 1) plot(calcaxes,showbit,ones(size(showbit))*theCA.lambda,'k-
','LineWidth',2); end
 if (stats.showLB == 1) plot(calcaxes,showbit,ones(size(showbit))*theCA.lambdab,'r-
','LineWidth',2); end
 if (stats.showLD == 1) plot(calcaxes,showbit,ones(size(showbit))*theCA.lambdad,'b-
','LineWidth',2); end
 if (stats.showLSA == 1) plot(calcaxes,showbit,ones(size(showbit))*(1-theCA.lambdad),'y-
-','LineWidth',2); end
 if (stats.showLSD == 1) plot(calcaxes,showbit,ones(size(showbit))*(1-theCA.lambdab),'y-
-','LineWidth',2); end

 if (stats.showBA == 1) plot(calcaxes,showbit,stats.BA(showbit),'m-','LineWidth',3); end
 if (stats.showBD == 1) plot(calcaxes,showbit,stats.BD(showbit),'r-','LineWidth',3); end
 if (stats.showCA == 1) plot(calcaxes,showbit,stats.CA(showbit),'c-','LineWidth',3); end
 if (stats.showCD == 1) plot(calcaxes,showbit,stats.CD(showbit),'b-','LineWidth',3); end
 if (stats.showSA == 1) plot(calcaxes,showbit,stats.SA(showbit),'r-','LineWidth',3); end
 if (stats.showSD == 1) plot(calcaxes,showbit,stats.SD(showbit),'y-','LineWidth',3); end
 if (stats.showE == 1) plot(calcaxes,showbit,stats.E(showbit),'k-','LineWidth',3); end
 if (stats.showP == 1) plot(calcaxes,showbit,stats.P(showbit),'g-','LineWidth',3); end
 % MIN MAX
 else
 ylabel(calcaxes,'Rate (min max)');
 if (i>stats.statsstart)
 showbit = stats.statsstart+1:1:i;
 if (stats.showBA == 1) plot(calcaxes,showbit,minmax(stats.BA(showbit)),'m-
','LineWidth',2); end

 if (stats.showBD == 1) plot(calcaxes,showbit,minmax(stats.BD(showbit)),'r-
','LineWidth',2); end
 if (stats.showCA == 1) plot(calcaxes,showbit,minmax(stats.CA(showbit)),'c-
','LineWidth',2); end
 if (stats.showCD == 1) plot(calcaxes,showbit,minmax(stats.CD(showbit)),'b-
','LineWidth',2); end
 if (stats.showSA == 1) plot(calcaxes,showbit,minmax(stats.SA(showbit)),'r-
','LineWidth',2); end
 if (stats.showSD == 1) plot(calcaxes,showbit,minmax(stats.SD(showbit)),'y-
','LineWidth',2); end
 if (stats.showE == 1) plot(calcaxes,showbit,minmax(stats.E(showbit)),'k-
','LineWidth',2); end
 if (stats.showP == 1) plot(calcaxes,showbit,minmax(stats.P(showbit)),'g-
','LineWidth',2); end
 end
 end
 end
 end
 end

 % DRAW CA
 %-----------
 if(drawRun > 0)
 if (theCA.drawspeed <= 1) || (mod(i,theCA.drawspeed) == 0)
 if (theCA.nodim == 2)
 imgr = reshape(stats.colmap(theCA.cells+1,2),theCA.griddim);
 imgg = reshape(stats.colmap(theCA.cells+1,2),theCA.griddim);
 imgb = reshape(stats.colmap(theCA.cells+1,2),theCA.griddim);

 set(IMH,'CData',cat(3,imgr,imgg,imgb));
 elseif(theCA.nodim == 3)
 view(runaxes,[30+(i/4) 10+(i/2)]);
 for zpos = 1:theCA.gridsize
 showfaces = []; showcells = []; b = []; ix = [];
 [b ix] = sort(reshape(theCA.cells(:,:,zpos),1,theCA.gridsize*theCA.gridsize));
 showcells = (b.*ix);
 showcells(showcells == 0) = [];
 showfaces =
(repmat(sort(repmat(showcells,1,size(cubeface,1)),'descend')',1,size(cubeface,2))*8)-8 +
repmat(cubeface,size(showcells,2),1);
 set(pah(zpos),'Faces',showfaces);
 end
 end
 set(drawhandles.currenttimestep,'String',num2str(i));
 set(drawhandles.currentpopulation,'String',num2str(stats.A(i) / theCA.nocells,'%2.4f'));
 drawnow;
 end
 if (theCA.drawspeed < 1) pause(theCA.drawspeed); end
 end
 i = i + 1;
 end
 end
 if (pauseca == 0) theCA.currenttimestep = theCA.maxt; end
end

function[y] = minmax(x)
 y = (x - min(x)) .* 1/(max(x)-min(x));
end

CLASS CA – INIT CELLS

function[theCA] = classCAInitCells(theCA)
 theCA.cells = zeros(theCA.griddim);
 if (theCA.initpopulation < 1)
 theCA.cells = ceil(rand(theCA.griddim) * (theCA.nostates-1));
 theCA.cells = theCA.cells .* (rand(theCA.griddim)<theCA.initpopulation);
 else
 theCA.cells = zeros(theCA.griddim);
 mid = 0 + ceil(theCA.gridsize/2);
 x = 0 + ceil(theCA.gridsize/2);
 if (theCA.nodim == 3)
 theCA.cells(mid,mid,mid) = 1;
 theCA.cells(mid+1,mid,mid) = 1;
 else
 theCA.cells(mid,mid) = 1;
 theCA.cells(mid+1,mid) = 1;
 end
 end
end

CLASS CA – SET VALUES

function[theCA] = classCASetValues(theCA)
 theCA.norules = size(theCA.rules,2);

 if (theCA.norules == 2^9) theCA.nodim = 2; theCA.noneighbours = 9; theCA.nostates = 2; end
 if (theCA.norules == 3^9) theCA.nodim = 2; theCA.noneighbours = 9; theCA.nostates = 3; end
 if (theCA.norules == 4^9) theCA.nodim = 2; theCA.noneighbours = 9; theCA.nostates = 4; end
 if (theCA.norules == 5^9) theCA.nodim = 2; theCA.noneighbours = 9; theCA.nostates = 5; end
 if (theCA.norules == 2^7) theCA.nodim = 3; theCA.noneighbours = 7; theCA.nostates = 2; end
 if (theCA.norules == 2^27) theCA.nodim = 3; theCA.noneighbours = 27; theCA.nostates = 2; end
 if (theCA.norules == 2^16) theCA.nodim = 2; theCA.noneighbours = 16; theCA.nostates = 2; end

 theCA.dieifalone = 0; if (theCA.rules(1,1) == 0) theCA.dieifalone = 1; end

 theCA.staterot = [];

 theCA = classCASetLambda(theCA);
 theCA = classCASetDim(theCA);
 theCA = classCASetRot(theCA);
end

CLASS CA – SET DIM

function[theCA] = classCASetDim(theCA)
 if (theCA.nodim == 1) theCA.griddim = [1]; end
 if (theCA.nodim == 2) theCA.griddim = [theCA.gridsize, theCA.gridsize]; end
 if (theCA.nodim == 3) theCA.griddim = [theCA.gridsize, theCA.gridsize, theCA.gridsize]; end

 theCA.nocells = prod(theCA.griddim);
end

CLASS CA – SET LAMBDA

function[theCA] = classCASetLambda(theCA)
 theCA.lambda = sum(sum(theCA.rules>0))/theCA.norules;
 theCA.lambdab = 0;
 theCA.lambdad = 0;
 for i = 1:2:(theCA.norules-1)
 theCA.lambdab = theCA.lambdab + theCA.rules(1,i);
 theCA.lambdad = theCA.lambdad + (1-theCA.rules(1,i+1));
 end
 theCA.lambdab = theCA.lambdab / (theCA.norules/2);
 theCA.lambdad = theCA.lambdad / (theCA.norules/2);
end

CLASS CA – SET RUN

function[theCA] = classCASetRun(theCA)
 theCA = classCAInitCells(theCA);

 theCA.currenttimestep = 1;
 theCA.currentalives = sum(sum(theCA.cells>0));
 theCA.currentsas = 0;
 theCA.currentbirths = 0;
 theCA.currentdeaths = 0;
 theCA.currentdeathage = 0;
 theCA.currententropy = 0;
 theCA.score = 0;
 theCA.cscore = 0;
 theCA.ccount = 0;
 theCA.slope = 0;
 theCA.maxpower = 0;
 theCA.class = 'Unknown';
end

CLASS CA – SET ROT

function[theCA] = classCASetRot(theCA)
 global fld;

 theCA.staterot = [];
 theCA.staterotz = [];

© Stephen James

Page 52 of 52

 for i = 1:1:ceil(theCA.norules/10000)
 minrot = (10000*(i-1))+1;
 if theCA.norules < (i*10000)
 maxrot = theCA.norules;
 else
 maxrot = i*10000;
 end
 if exist(cat(2,fld,'\System Files\','statrot-',num2str(theCA.nostates),'-',num2str(theCA.noneighbours),'-
',num2str(i),'.mat'))
 load(cat(2,fld,'\System Files\','statrot-',num2str(theCA.nostates),'-',num2str(theCA.noneighbours),'-
',num2str(i),'.mat'));
 theCA.staterot(1,minrot:1:maxrot) = staterottmp;
 else
 staterottmp = [];
 for j = minrot:1:maxrot
 k = staterotate(j, theCA.nostates, theCA.nodim, theCA.noneighbours);
 staterottmp(j-minrot+1) = k;
 output = j
 end
 save(cat(2,fld,'\System Files\','statrot-',num2str(theCA.nostates),'-',num2str(theCA.noneighbours),'-
',num2str(i),'.mat'),'staterottmp');
 end
 end

 for i = 1:1:ceil(theCA.norules/10000)
 minrot = (10000*(i-1))+1;
 if theCA.norules < (i*10000)
 maxrot = theCA.norules;
 else
 maxrot = i*10000;
 end
 if exist(cat(2,fld,'\System Files\','statrotz-',num2str(theCA.nostates),'-',num2str(theCA.noneighbours),'-
',num2str(i),'.mat'))
 load(cat(2,fld,'\System Files\','statrotz-',num2str(theCA.nostates),'-',num2str(theCA.noneighbours),'-
',num2str(i),'.mat'));
 theCA.staterotz(1,minrot:1:maxrot) = staterottmp;
 else
 staterottmp = [];
 for j = minrot:1:maxrot
 k = staterotatez(j, theCA.nostates, theCA.nodim, theCA.noneighbours);
 staterottmp(j-minrot+1) = k;
 output = j
 end
 save(cat(2,fld,'\System Files\','statrotz-',num2str(theCA.nostates),'-
',num2str(theCA.noneighbours),'-',num2str(i),'.mat'),'staterottmp');
 end
 end
end

function[y] = staterotate(x, nostates, nodim, noneighbours)

 states = zeros(1,noneighbours);
 x1 = x-1;
 for i = noneighbours-1:-1:0
 for j = nostates-1:-1:1
 if (x1 >= (nostates^i)*j) states(1,i+1) = j; x1 = x1 - ((nostates^i)*j); end
 end
 end

 if (noneighbours == 3)
 y = (states(1,1) * (nostates^0)) + ...
 (states(1,3) * (nostates^1)) + ...
 (states(1,2) * (nostates^2));
 elseif (noneighbours == 5)
 y = (states(1,1) * (nostates^0)) + ...
 (states(1,2) * (nostates^2)) + ...
 (states(1,3) * (nostates^3)) + ...
 (states(1,4) * (nostates^4)) + ...
 (states(1,5) * (nostates^1));
 elseif (noneighbours == 9)
 y = (states(1,1) * (nostates^0)) + ...
 (states(1,2) * (nostates^2)) + ...
 (states(1,3) * (nostates^3)) + ...
 (states(1,4) * (nostates^4)) + ...
 (states(1,5) * (nostates^1)) + ...
 (states(1,6) * (nostates^6)) + ...
 (states(1,7) * (nostates^7)) + ...
 (states(1,8) * (nostates^8)) + ...
 (states(1,9) * (nostates^5));
 elseif (noneighbours == 7)
 y = (states(1,1) * (nostates^0)) + ...
 (states(1,2) * (nostates^2)) + ...
 (states(1,3) * (nostates^3)) + ...
 (states(1,4) * (nostates^4)) + ...
 (states(1,5) * (nostates^1)) + ...

 (states(1,6) * (nostates^5)) + ...
 (states(1,7) * (nostates^6));
 end
 y = y + 1;
end

function[y] = staterotatez(x, nostates, nodim, noneighbours)

 states = zeros(1,noneighbours);
 x1 = x-1;
 for i = noneighbours-1:-1:0
 for j = nostates-1:-1:1
 if (x1 >= (nostates^i)*j) states(1,i+1) = j; x1 = x1 - ((nostates^i)*j); end
 end
 end
 y = x1;
 if (noneighbours == 7)
 y = (states(1,1) * (nostates^0)) + ...
 (states(1,2) * (nostates^6)) + ...
 (states(1,3) * (nostates^2)) + ...
 (states(1,4) * (nostates^5)) + ...
 (states(1,5) * (nostates^4)) + ...
 (states(1,6) * (nostates^1)) + ...
 (states(1,7) * (nostates^3));
 end
 y = y + 1;
end

CLASS CA - LOAD

function theCA = classCALoad(theCA, filename)
 theCA.filename = filename;

 load(theCA.filename);
 theCA.rules = bestrules;

 theCA = classCASetValues(theCA);
 theCA = classCASetRun(theCA);
end

CLASS CA - SAVE

function[theCA] = classCASave(theCA, filename)
 bestrules = theCA.rules;
 theCA.filename = cat(2,regexprep(filename,'.mat',''),'.mat');
 save(theCA.filename,'bestrules');
end

CLASS STATS - MAIN

function[stats] = classStats()
 stats.showRates = 1;
 stats.showFreq = 0;
 stats.showParts = 0;

 stats.A = [];
 stats.D = [];
 stats.B = [];
 stats.C = [];

 stats.P = [];
 stats.BA = [];
 stats.BD = [];
 stats.CA = [];
 stats.CD = [];
 stats.SA = [];
 stats.SD = [];
 stats.E = [];
 stats.F = [];

 stats.showL = 1;
 stats.showLB = 1;
 stats.showLD = 0;
 stats.showLSA = 1;
 stats.showLSD = 0;

 stats.showP = 1;

 stats.showBA = 0;
 stats.showBD = 1;
 stats.showCA = 0;
 stats.showCD = 1;
 stats.showSA = 1;
 stats.showSD = 0;
 stats.showE = 0;

 stats.showMinMax = 0;
 stats.showSpringy = 1;

 stats.showFull = 1;
 stats.showRecent = 1;
 stats.showXFreq = 1;
 stats.showXLogFreq = 0;
 stats.showXPeriod = 0;
 stats.showYAmp = 1;
 stats.showYPower = 0;
 stats.showYLogPower = 0;

 stats.statsstart = 10;

 stats.colmap = [0.0 0.0 0.0;...
 0.0 1.0 0.0;...
 1.0 1.0 0.0;...
 1.0 0.0 1.0;...
 0.0 1.0 1.0;...
 0.0 0.0 1.0;...
 1.0 0.0 0.0;...
 0.7 0.0 0.0;...
 0.0 0.7 0.0;...
 0.0 0.0 0.7;...
 0.7 0.7 0.0;...
 0.7 0.0 0.7;...
 0.0 0.7 0.7];

 [stats.gauss stats.gaussix] = hist(randn(1, 10000),21);
End

CLASS STATS –RESET

function[stats] = classStatsReset(stats)
 stats.P = []; % Population Statistics
 stats.SA = []; % Stay Alive statistics
 stats.B = []; % Birth Statistics
 stats.D = []; % Death Statistics
 stats.E = []; % Entropy Statistics
 stats.A = []; % Age statistics
 stats.F = []; % 1/f Slope Statistics
end

