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Abstract 

In the report Looking for Life (James 2005) the concept of Population Dynamics was introduced as a 

means of finding interesting and complex behaviours within Cellular Automata (CA); this paper aims 

to redefine these measures so as to represent a formal methodology for all CA analysis. Based on 

these dynamics, a number of general observations shall be highlighted, with particular attention being 

given to the contrasts between ordered, chaotic and complex behaviours. These contrasts shall then 

be further examined by a new method of probabilistic analysis wherein a more solid mathematical 

notion of ordered and chaotic behaviour shall be proffered and a clearer understanding of complex 

behaviour is proposed. Finally, it is hoped that these clearer definitions of complexity within cellular 

automata may assist in grounding the more general term used throughout the interdisciplinary 

Sciences of Complexity. 
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2 INTRODUCTION 

From the molecules to the stars, the natural world is awash with complex systems. They are our cells, 

our bodies, our societies and our minds. They are the whole, which is so often so much greater than 

the sum of its parts. 

 

For thousands of years, man has grappled to understand how it is that we are both part and whole; 

how it is that our cells, together and alone, create our bodies and our souls.  

 

For the most part, science has been dismantling the world with a reductionistic axe; redefining the 

whole to be nothing more than the atomic interplay of its constituent parts. But this paradigm is, 

fortunately, beginning to shift (Capra 1996, Davies 2003). New systems sciences (Van Bertalanffy 

1969) are finally starting to study global properties and behaviours (or wholes) as classifiable 

phenomena and are trying and work out which of these behaviours arise under which systemic 

conditions (Lorenz 1963, Prigogine 1967, Mandelbrot 1977, Feigenbaum 1978). 

 

Complexity Science, in particular, is actively studying the forces that give rise to adaptive, 

computational or just plain interesting behaviour found within complex dynamical networks. Its aim is 

to bridge the gap between the macroscopic behaviours of the whole and the microscopic dynamics of 

the parts (Kauffman 1993, Langton 1989, Wuensche 1996); a question that is pertinent to all complex 

systems whether biological, psychological, economical or social. 

 

This paper aims to join this endeavour, and shall do so from the perspective of one of the core 

modelling techniques used within the science of complexity; the wonderful world of cellular automata. 

 

In an earlier report, Looking for Life (James 2005), the concept of Population Dynamics was 

introduced as a means of finding complex behaviours in cellular automata. In chapter 3 of this paper, 

we aim to redefine these measures so as to represent a formal methodology for wider CA analysis. 

 

From an analysis of these dynamics, Chapter 4 shall introduce the notion of settling down to 

behavioural stability, and use this to compare and contrast the three standard classes of global 

behaviour within CA (order, chaotic and complex).  Chapter 5 shall then extend these observations 

through frequency analysis and proffer an explaination for the ubiquitious 1/fb noise in order to bring 

together the notions of settling down and complexity. 

 

A new method of probabilistic analysis shall be introduced in chapter 6, to further study and more 

clearly understand some of the observations of behavioural stability. A more solid mathematical 

definition of ordered and chaotic behaviour shall be offered and a refined definition of complexity 

within cellular automata shall be proposed. 

 

Finally, we introduce a possible future measure of complexity within cellular automata and conclude 

with an examination of complexity’s position within the wider, intedisciplanary sciences of systems. 

 

First, however, it is useful to follow in some of the footsteps made by the early pioneers of this 

research program, and to understand some of the history between cellular automata and the science 

of complexity. 
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2.1 CELLULAR AUTOMATA AND THE SCIENCE OF COMPLEXITY 

In the 1940’s John von Neumann grappled with the problem of self-replication (Von Neumann 1966). 

Like so many of the early cybernaticians and game theorists, he wanted to use his understanding of 

the new mathematics of non-linear systems to brake down some of the vitalistic barriers buried within 

the study of biological systems. He aimed to devise a mathematical model for an imaginary factory 

that was capable of building other factories just like itself. In looking for a framework for his idea, he 

came across the work of his colleague, Stanislaw Ulam, whose crystal growth analysis was modelled 

within an abstract mathematical world called a lattice network. Using such a network, Von Neumann 

devised a 29-state automaton which, when placed in each cell of the lattice, was able to perform the 

kind of self replication he had envisaged (Wolfram 2002). 

 

This marvellous model was the first example of a Cellular Automata, but it didn’t attract any real 

attention until 25 years later, when John Conway discovered a rather majestic set of automaton rules 

known as the Game of Life. Conway, inspired by his recent mathematical success with symmetry 

groups, took on the daunting task of simplifying Von Neumann’s self-replication model. “After the 

rejection of many patterns… and of many other laws of birth and death, including the introduction of 

two and even three sexes” he finally succeeded and found what he was looking for, “a viable balance 

between life and death” (Guy & Conway 1985).  

 

The Game of Life gained immediate acclaim due to the remarkable array of evocative patterns it 

produced. A menagerie of lifelike gliders and guns could be seen interacting with each other inside a 

virtual mathematical world. Many began to question how, and why these patterns came to be, and 

why they didn’t exist in any of the other rulesets. 

 

In 1984, Stephen Wolfram published a report that looked at answering some of these questions 

(Wolfram 1984). By that time, cellular automata (CA) had become a well defined and widely studied 

branch of mathematics. A CA was defined to be a D-dimensional lattice with a finite state automaton 

placed at each site in the lattice. Each automaton could have Q distinct states and at any given time 

(t) an automaton would be said to be in the specific state. Each automaton would calculate its next 

state from a lookup table of rules based on the configuration of its local neighbourhood. The 

automaton rule table would simply consist of a rule for each possible configuration within the N 

neighbourhood template. Numerically speaking, therefore, it was found that a particular class of CA 

would have )|(| ||

||
NQQ  possible rulesets (Ganguly 2003). 

 

Given that the Game of Life has 2 states and a 9 cell neighbourhood (known as the Binary Moore 

configuration) it was soon realised that this ruleset was one of 10154 possibilities. So Wolfram 

narrowed down the playing field by examining the smaller world of 1-dimensional CA. From the careful 

analysis of this CA landscape, he declared four classifications to categorise the various global 

behaviours. 

 

Class I:  Evolution leads to a homogeneous state 

Class II: Evolution leads to a set of separated simple stable or periodic structures 

Class III: Evolution leads to a chaotic pattern 

Class IV: Evolution leads to complex localized structures, sometimes long-lived 

 

By classifying the behavioural landscape in this way, the question immediately became “how do we 

determine which rulesets will produce which of these behaviours?” 
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The fledgling field of Complexity Science, nestling inside the Santa Fe Institute, was first to propose 

an answer. Chris Langton revised Wolfram’s classes to fit with the growing language of dynamical 

systems. He regrouped class I and class II as a single class of Ordered behaviors (on the basis that a 

homogeneous state is a cyclical state of period one) and he simply renamed Class III behaviors to be 

Chaotic. The last, interesting set of behaviors (Class IV), he called Complex (Langton 1990). 

 

These three classes of behavior were suggested to be analogous to the three states of matter. 

Ordered behavior was analogous to the solidity of ice; chaotic behavior acted like the gaseous 

randomness of steam; whilst Complexity lay somewhere in between the two, a fluid place of liquidity 

and motion (Waldrop 1992, Coveney & Highfield 1995, Lewin 1993). This place became known as the 

Edge of Chaos (Packard 1988). 

 

Chris Langton devised a parameter, the lambda (λ) parameter, which he hoped would be able to 

separate the three classes of behaviour (Langton 1990). He found that most rulesets with a λ above 

0.2734 displayed chaotic behavior whilst most rulesets with a λ below 0.2734 displayed ordered 

behavior. The Game of Life, however, lay precisely upon the the edge of the two, with a λ of precisely 

0.2734. 

 

Complexity Theorists began to propose that dynamical systems tuned to this Edge of Chaos would 

possess a property known as Emergence (the process by which new forms of order could be 

generated within levels higher than the level of the constituent parts of a system) (Kauffman 1993, 

Holland 1998, Bickhard & Campbell 2000). Through this emergence complex patterns would persist in 

nature and, through the forces of self-organisation and natural selection, would be pruned for their 

adaptivity (Cariani 1990, Morowitz 2002). 

 

However, complexity was not going to be so readily simplified. James Crutchfield and Melanie Mitchell 

have subsequently shown that the λ parameter is inadequate as a classification scheme (Mitchell, 

Hraber and Crutchfield 1993). It has been shown that evolution does NOT favour this mystical arena 

and that there are, in fact, a vast array of ordered CAs with a λ greater that 0.2734 just as there are a 

vast array of chaotic CAs with a λ of less that it. The edge of chaos, although a wonderfully evocative 

metaphor, is unfortunately just that. 

 

Regretably, this has left Complexity Science a little bereft of its foundations and for the principles of 

emergence to continue a more solid concept of complexity is required. Although the reclassification of 

cellular automata into ordered, chaotic and complex seems justifiable, the landmarks and explanations 

for this classification are missing. The original questions posed by the existence of the Game of Life 

remain unanswered and a suitable understanding of emergent phenomena remains a mystery. 

 

A dedicated few, however, have kept hold of the tail of this mystery. Andy Wuensche has proposed 

Entropy Variance as a suitable classification scheme, distinguishing chaotic and ordered systems by 

means of their respective high and low entropies (Wuensche 1996). So too, Shigera Ninagawa has 

expressed 1/fb noise as a unique tell-tale signature of complexity in CAs and has gone on to find other 

rulesets showing complex behaviour using this signature (Ninagawa 1998, Ninagawa 2005). More 

recently however, within a short report entitled Looking for Life (James 2005), an alternative route to 

the problem has been opened up; and it is this route that shall be followed within this report. 



© Stephen James 

 

Page 7 of 52 

2.2 PREVIOUS WORK IN LOOKING FOR LIFE 

Looking for Life (James 2005) tentatively introduced a new series of population measures which were 

able to distinguish between chaotic and ordered systems and, importantly, could highlight the 

complex behaviour of the Game of Life. 

 

Although poorly understood at the time, these observations were used to create a basic Genetic 

Algorithm which was able to adequately search the Binary Moore landscape looking for other rulesets 

that fit this profile of complexity. The results were very promising. 

 

A series of rulesets were discovered which displayed complex emergent phenomena similar to, and in 

some cases beyond, those found in the Game of Life. Self-replicators and gliders were found in 

abundance, and in many shapes and sizes, throughout the massive rule-space. 

 

The remainder of this paper aims to expand upon the work started within this report, with the hope of 

providing a greater understanding of complexity within CAs; but before proceeding, it is necessary to 

adapt and redefine the measuring techniques outlined to introduce a more formal set of measures 

called, the Population Dynamics of CA. 



© Stephen James 

 

Page 8 of 52 

3 DEFINING POPULATION DYNAMICS 

The following chapter aims to redefine the population measures outlined in Looking for Life in order to 

establish a more formal framework for CA measurement. This framework has been called the 

Population Dynamics of CA. 

3.1 LIFE AND DEATH - A NATURAL BISECTION 

First, it is important to make explicit a subtle shift in perspective in these new measures. Rather than 

looking at the standard world of “cell states”, we shall instead view CA behaviours from the binary 

domain of “cell existence". 

 

Chris Langton made a similar shift during his formal definitions of the Lambda parameter wherest he 

defines the bisection between “quiescent” and “non-quiescent” cell states. A “quiescent” state is 

described as a kind of background state upon which the “non-quiescent” states perform their complex 

behaviour. In the Game of Life, for example, one colour (state zero) acts as a background upon which 

a second colour (state one) forms gliders, guns and blinkers. 

 

Indeed, it appears that this natural bisection is quite common, although often non-explicit, within CA 

research, especially when considering multi-state CAs. 

 

As an illustration, figure 3.1 shows two example multi-state CAs. Both contain a distinct background 

colour upon which all complex behaviour can be observed. In fact, it can also be seen that the bodies 

of gliders, guns and other phenomena can contain many different colours (states) but that the identity 

of these emergent agents is observed purely by their relation to the background state (observed by 

examining the facsimile image in figure 3.1). 

 

Multi-state complexity found by Andy Wuensche Multi-state complexity found by Steve James 

    

(Figure 3.1) The natural bisection found in 3-state and 4-state CAs 

 

It is this observation which takes us away from cell state space and into the subtly different domain of 

cell existence. More formally, we declare that each cell in any CA (of any number of states) has a 

binary classification of either “alive” (non-quiescent) or “dead” (quiescent). 

 

Total cells (X) - the total number of cells within the CA lattice 

Alive cells (At) - the number of “alive” (non quiescent) cells at time (t) 

Dead cells (Dt) - the number of “dead” (quiescent) cells at time (t) 

 

tt DAX +=       (3.1) 

 

From this binary perspective we can begin to include the further notions of change and time. 
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3.2 BIRTH AND DEATH – ADDING A MEASURE OF CHANGE 

The data available for measurement in a CA has traditionally been considered in discrete snapshots. 

For example, the simple CA in figure 3.2 (at timestep 2) can be measured from the “cell state” 

perspective as containing 21 white cells, 2 green cells, 1 blue cell and 1 red cell (so providing 4 

measurements of data). Similarly, if considered from the “cell existence” perspective, the CA can be 

said to contain 21 dead cells and 4 alive cells (so providing 2 measurements). 

 

Timestep 1 

     
     
     
     

      

Timestep 2 

     
     
     
     

      

Timestep 1 

     
     
     
     

      

Timestep 2 

     
     
     
     

      
Cell state space Cell existence space 

(Figure 3.2) Snapshots of information within a CA 

 

However, there is another measurement hidden between the consecutive timesteps that has, up until 

now, gone unnoticed; the notion of change. (Figure 3.3 highlights this information by placing a cross 

inside the cells which have changed between the two timesteps) 

 

Timestep 1 

     
     
     
     

      

Timestep 2 

  x   
 x x   
 x x   
     

      

Timestep 1 

     
     
     
     

      

Timestep 2 

  x   
     
 x x   
     

      
Cell state space Cell existence space 

(Figure 3.3) Adding the notion of change to informational snapshots within a CA 

 

From the domain of “cell existence”, these crosses are extremely interesting as they introduce the 

concepts of “becoming alive” and “becoming dead” to our arsenal of measurements. For example, in 

figure 3.3, we can now say that 2 cells have “been born” and 1 cell has “died”. 

 

However, in the domain of cell state space, these crosses are far less meaningful. Consider the similar 

concept of “becomes green”; because this may refer to a white, blue or red cell becoming green the 

concept is very broad and of little general use. Potentially, you may want to create a series of distinct  

concepts such as “white becomes green” but this would require Q2-Q such concepts for a Q-state CA 

and these would only be of use for that  particular class of CA.  

 

One of the key advantages of the domain of “cell existence” is that these notions of change are widely 

comparable across all classes of CA and may even prove a useful measure for comparison amongst 

the wider community of dynamic systems in general. 

 

To conclude, we can more formally define the notions of change as:- 

 

Babies (Bt) - the number “alive” cells at time (t) which were “dead” at time (t-1) 

Corpses (Ct) - the number “dead” cells at time (t) which were “alive” at time (t-1) 

Stay Alives (SAt) - the number “alive” cells at time (t) which were also “alive” at time (t-1) 

Stay Deads (SDt) - the number “dead” cells at time (t) which were also “dead” at time (t-1) 
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3.3 POPULATION DYNAMIC DEMOGRAPHICS 

As shall be seen later in this paper, normalising these measures to make them proportional with 

respect to the overall size of the CA is essential for the sensible cross referencing of statistical data. As 

such we outline the four main statistical measures that shall be used below:- 

 

POPULATION RATE 

at = At / X proportion of alive cells at time (t) 

dt = Dt / X proportion of dead cells at time (t) 

 

BIRTH RATE 

bt = Bt / X proportion of cells which were “dead” at time (t) but “alive” at time (t-1) 

 

DEATH RATE 

ct = Ct / X proportion of cells which were “alive” at time (t) but “dead” at time (t-1) 

3.4 INTRODUCING THE CATS TOOLSET 

As already stated, the primary concern of this paper lies with the observations and conclusions that 

are drawn from the measurement and analysis of Population Dynamics within CA. In order to perform 

this study a series of tools was created which would allow for the creation and running of a number of 

CAs and for the measurement and analysis of their respective dynamics from the perspective of time, 

frequency and probability. These tools have become collectively known as the Cellular Automata 

Testing System (CATS). 

 

In is not the intention of this paper to go into any detail regarding the specific design decisions and 

coding techniques of the CATS systems; however a full list of the MATLab functions implemented is 

provided within Appendix C. Screenshots and results from the software will be used throughout the 

paper, but figure 3.4 below shows the main screens created and used (Appendix B also contains 

further details for each screen). 

 

 

(Figure 3.4) An example of some of the CATS screens 
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4 OBSERVING POPULATION DYNAMICS 

Having made a clear set of definitions for Population Dynamics in cellular automata, this chapter aims 

to outline how these dynamics are played out within an example set of cellular automata. 

4.1 INTRODUCING CA EXAMPLES 

We begin with a quick introduction of these example CA rulesets; the true nature of which can only 

really be appreciated by watching the dynamic evolution of their behaviour. In reducing this behaviour 

to two dimensional “snap-shots” most of the important features are lost and so a brief paragraph 

describing how each one evolves should help to enhance the readers understanding of some of the 

later observations and discussions. 

 

All of our examples shall be 2-dimensional Moore neighbourhood CAs and the “snap shots” provided 

show dead cells as BLACK and alive cells as WHITE. Appendix A contains the full ruletable for each 

example ruleset. 

 

RULE 1: ORDERED: WITH A SLOW DECAY 

t=1 

 

t=10 

 

t=20 

 

t=30 

 

(Figure 4.1) Snap shots of CA Rule 1, taken every 10 timesteps 

The randomly distributed initial population slowly dissolves, into smaller and smaller pockets of activity. After about 

20 timesteps all such activity has completely stopped leaving only a handful of simple blinkers and fixed blocks. 

 

RULE 2: ORDERED: WITH A QUICK DECAY 

t=1 

 

t=10 

 

t=20 

 

t=30 

 

(Figure 4.2) Snap shots of CA Rule 1, taken every 10 timesteps 

The initial population quickly dissolves (within 5 timesteps) resulting in a handful of simple blinkers and fixed blocks.  
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RULE 3: CHAOTIC: WITH A LOW Λ 

t=1 

 

t=10 

 

t=20 

 

t=30 

 

(Figure 4.3) Snap shots of CA Rule 1, taken every 10 timesteps 

A roughly constant density (approximately equal to λ) of rapidly changing noise is displayed. 

 

RULE 4: CHAOTIC: WITH A HIGH Λ 

t=1 

 

t=10 

 

t=20 

 

t=30 

 

(Figure 4.4) Snap shots of CA Rule 1, taken every 10 timesteps 

As rule 3, but with a slightly higher density of alive cells maintained. 

 

RULE 5: COMPLEX: GAME OF LIFE 

t=1 

 

t=10 

 

t=20 

 

t=30 

 

(Figure 4.5) Snap shots of CA Rule 1, taken every 10 timesteps 

John Conway’s famous Game of Life. A world in which gliders are surrounded by a mixture of ordered blinkers and 

stable blocks as well as bubbling pockets of noisy activity. 

 

RULE 6: COMPLEX: REPLICATING GLIDER GUNS 

t=1 

 

t=10 

 

t=20 

 

t=30 

 

(Figure 4.6) Snap shots of CA Rule 1, taken every 10 timesteps 

Discovered within “Looking for Life” this ruleset quickly dissolves to a near barren landscape in which growing 

patterns bubble and collide occasionally spewing forth gliders in all directions.  
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4.2 POPULATION DYNAMIC GRAPHS FOR CA EXAMPLES 

The following graphs show how the measures of Population Dynamics change over time for each of 

our example CAs. All tests were performed within a lattice of 50x50 cells, and were run over 100 

timesteps. The CAs were all started with a random initial density (a0) of 0.25. 

 

Rule 1: Slow decay to order 

 

 

λ 

 

at 

 

bt 

 

ct 

 

Rule 2: Quick decay to order 

 

(Figure 4.7) Rate of change graphs for cellular automata displaying ORDERED behaviour 
 

 

Rule 3: Chaos with a low λ 

 

 

 

λ 

 

at 

 

bt 

 

ct 

 

Rule 4: Chaos with a high λ 

 

(Figure 4.8) Rate of change graphs for cellular automata displaying CHAOTIC behaviour 
 

 

Rule 3: Chaos with a low λ 

 

 

 

λ 

 

at 

 

bt 

 

ct 

 

Rule 4: Chaos with a high λ 

 

(Figure 4.9) Rate of change graphs for cellular automata displaying COMPLEX behaviour 
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4.3 THE ATTRACTION OF BIRTH AND DEATH 

Our first quick, and simple, observation relates to all of the examples provided (and in fact has been 

observed within all CA ever measured using these methods). In looking at figures 4.7, 4.8 and 4.9 it is 

immediately apparent that the birth and death rates follow each other extremely closely throughout 

the lifecycle of the cellular automata. In other words, the number of births and the number of deaths 

within any cellular automata at any given moment appears to be roughly equal. 
 

tt CB ≈       (4.1) 

 

This fact is examined in a little more depth later in this paper, but a further analysis (beyond our 

scope) may turn out to be of great benefit. 

4.4 SETTLING DOWN TO BEHAVIOURAL STABILITY 

In “A New Kind of Science” (Wolfram 2002), Stephen Wolfram describes a class of CA which “settles 

down” to either a stable or periodic pattern of behaviour (later known to be the class of ordered CA). 

This process of settling down, he claims, can be described as a kind of self-organisation for complex 

systems. In contrast to this, he describes an alternative class of CAs which never “settles down” in 

this way, but which instead keeps evolving in a random (chaotic) or sometimes computationally 

interesting (complex) way. 

 

This view is the generally held view within most CA research, and clearly supposes that this “settling 

down” period is unique to ordered systems; with chaotic and complex systems being an opposing kind 

of behaviour that “never settles down”. This view is challenged below. 

 

Rule 1 of our examples, is described as having a “slow decay” (or settling down period) of around 20 

timesteps. During this period of decay, one can describe the evolution of the CA as “looking like water 

draining from a bath riddled with holes”. A world of chaos quickly becomes puddles of chaos which 

eventually drain away to nothingness. Once the bath has emptied, once the settling down period has 

ended, the CA is left with nothing but a handful of fixed points and blinkers. 

 

These two distinct periods of activity (settling down and order) are clearly visible in the population 

dynamic graphs given in figure 4.7; an initial period where the population measures gradually decay 

towards zero (corresponding with the settling down period) followed by a period of perfect linear 

stability (corresponding with the ongoing period of ordered behaviour). This is further illustrated, and 

extended, in figure 4.10 which shows how the length of this settling down period can be changed by 

altering the initial density of the system. 
 

a0 = 0.02 

  

a0 = 0.1 
 

 

a0 = 0.5 

  

(Figure 4.10) Extending the “settling down” period before ORDERED behaviour 
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None of this is yet out of tune with Wolfram’s observations or comments; ordered systems show a 

distinctive settling down period; but what about chaotic ones? 

 

An initial glance at the population dynamic graphs of our chaotic examples (figure 4.8) would again 

seem to concur with Wolfram. There is no indicative slope in either of these graphs; in fact, the 

population measures simply seem to remain in a roughly straight, but rather noisy, line. 

 

Interestingly the initial density for both graphs was around 0.25. The first system maintains this initial 

density throughout, but for some reason (discussed later) the second system seems to “bump this up 

a bit” to maintain a straight line of noise at around 0.45. Besides that oddity, however, neither of 

them seems to show any signs of settling down; totally in tune with Wolfram. 

 

However, if, as before, the initial density is altered a little bit, we see a slightly different picture. 

Figure 4.11 below illustrates this a little more clearly. 

 

a0 = 0.02 

 

a0 = 0.01 

 

a0 = 0.005 

 

(Figure 4.11) Extending the “settling down” period before CHAOTIC behaviour 

 

At very low initial densities, the tell-tale signs of a “settling down” period seem to reappear; but this 

time in reverse. The population rate seems to slowly climb upwards to a more stable level. 

 

When watching such a CA evolve, one can best describe it as looking like the exact opposite to the 

“settling down” period of an ordered system. It can be likened to watching the imaginary bath 

draining in reverse; with puddles of chaotic behaviour slowly growing until the CA is completely full. 

 

So it would seem that we can again split the evolution of these CA into two periods of behaviour; a 

kind of “settling up” period followed by a maintained period of “chaotic” behaviour. For the majority of 

the time, this chaotic behaviour is reached within a matter of 1 or 2 timesteps (seen as a quick 

“bumping up” seen earlier in Rule 4) and so it has traditionally been overlooked. 

 

In conclusion, rather than describing ordered systems as “settling down” and chaotic systems as 

“never settling down” (as Wolfram does), it seems that we would be better served by describing both 

systems as settling down to a level of behavioural stability; an important shift of perspective which 

shall be examined in much more depth throughout the remainder this paper. 

4.5 CONTRASTS BETWEEN ORDER AND CHAOS 

Looking more closely at these levels of behavioural or population stability, one can immediately see a 

stark contrast between the two classes of order and chaos. Based on these contrasts (and through the 

extended study of a wider collection of rulesets not outlined within this paper) we can state the 
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following observational statements for all ordered and chaotic behaviour found within cellular 

automata. 

ORDERED BEHAVIOUR 

1. After the initial “settling down” period, all rates reach a distinctive mean (a point of behavioural stability) 

wherefrom they either remain static or show a flat periodic rate of change. 

2. The mean of the population rate is always of a very low value, usually extremely close to zero. 

3. The birth and death rates share the same mean which also tends to be extremely close to zero. 

CHAOTIC BEHAVIOUR 

1. After a (usually short) “settling down” period, all rates reach a distinctive mean (point of behavioural 

stability) wherefrom they show a roughly flat, but extremely noisy (non-periodic) rate of change. 

2. The mean of the population rate is always a high value which tends to be reasonably close to λ. 

3. The birth and death rates share the same mean which is also of a reasonably high value. 

 

In short, therefore, it is observed that both types of system exhibit a distinctive point of behavioural 

stability and that a distinct difference can be found in the value (height) of this point, and in the type 

of wave-pattern displayed once it has been reached. 

 

Ordered systems tend to have a low and flat (or periodic) point of behavioural stability whereas 

chaotic systems tend to have a high and noisy point of behavioural stability. 

4.6 COMPLEXITY AND THE LACK OF BEHAVIOURAL STABILITY 

Given such a clear and distinctive set of population dynamics found within ordered and chaotic 

systems, we can now go on to examine our examples of complex behaviour. 

 

From figure 4.9 it seems immediately evident that defining a distinctive mean or point of stability 

becomes rather difficult. Although it may be said that the population rates are “generally low” it is 

much more difficult to pinpoint an accurate average value as they seem to show a reasonably high 

degree of long term variance (a behaviour that one might wish to call a random walk). 

 

Unlike ordered and chaotic systems where a formal set of statements regarding the behaviour of 

population rates can be made, it seems that with complex behaviour we can only talk in general 

terms. 

 

1. A distinctive settling down period is hard to observe, but there certainly appears to be a period of time 

during which a large part of the system decays to leave pockets of complex behaviour. At this point the 

random walk fluctuations of the population rates become less dramatic and they can be said to have 

reached a kind of very rough (but difficult to measure) mean. 

2. The population rate’s rough mean always lies at some low value between λ/2 and zero. 

3. The birth and death rates share the same low rough mean somewhere below at. 

 

Clearly, these statements are far less defined that those made for order and chaos; but importantly it 

seems that the systems contain certain elements of both. It is almost as though complex behaviour is 

a kind of difficult to pinpoint combination of ordered and chaotic characteristics. 

 

The generally low population rate is a distinct characteristic of order, whilst the noisy fluctuations are 

more akin to chaos. 
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4.7 POPULATION DYNAMICS AND ENTROPY VARIANCE 

In 1996 Andy Wuensche highlighted a strikingly similar set of observations regarding the dynamics of 

ordered, chaotic and complex behaviours, but from the entirely separate standpoint of Entropy 

Variance. By recording the frequency distribution of rule lookups (or state configurations), he was able 

to measure the effective entropy of the system using Shannon’s entropy equation (below). 

 

∑
=















×






−=

k

i

t
i

t
it

n
Q

n
QS

2

1

)()(
)( log     (4.2) 

 

He found that chaotic behaviour showed a distinctively high level of entropy whilst ordered behaviour 

showed a distinctively low level of entropy. For complex behaviour the entropy was seen to be much 

less stable and would fluctuate greatly between high and low values in a kind of random walk. 

 

This obviously sounds rather reminiscent of the observations made previously for population 

dynamics; and in fact it seems that this relationship is stronger than mere descriptive analogy. 

 

By plotting the min/max of the population rate alongside the min/max of the entropy variance, one 

immediately becomes aware that the two measurements follow a similar path (see figure 4.12 below – 

the entropy is shown in BLACK and the population rate in GREEN). 

 

Entropy and at - Order 

 

Entropy and at – Chaos 

 

Entropy and at - Complexity 

 

(Figure 4.12) Min/Max graphs showing the relationship between entropy and at 

 

As the population rate grows, the entropy grows proportionately with it. As the population rate 

decreases, so too does the entropy. The dynamics of the two measures are never quite the same but 

they are most remarkably similar. If they were the same, one might reasonably assume that they 

were measuring the same basic property of the system; but as they’re not, one might summise that 

their closeness is due to them both being driven by the same underlying cause. 

 

On discussing this observation with Andy himself, he proposed a possible (and seemingly likely) 

explanation for what this underlying cause might be. 

 

As the population rate increases more cells becomes available to make a broader set of state 

configurations. The higher the population rate, the greater this distribution of configurations will 

become. Or to put it another way, it is the change in population rate which drives the increase and 

decrease in entropy. 

 

This is discussed a little further in the concluding chapter of this paper, but may also benefit from 

further study with an eye to crossing the academic bridge between CA and thermodynamic principles. 
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5 FOURIER ANALYSIS OF POPULATION DYNAMICS 

Given our observations and measurements of Population Dynamics within the time domain, we now 

move on to examine this data from the alternative perspective of the frequency domain. 

5.1 FREQUENCY MEASURES AND TIMEWINDOWS 

Methods for measuring frequency are well known and well documented. By use of a Fourier 

transformation it is possible to turn a time-line analysis into a simple Power/ Frequency graph showing 

the power of the underlying Sin and Cos fluctuations which make up the original waveform. Figure 5.1 

shows an example of a FFT (Fast Fourier Transform) based on a set of simple equations:- 
 

y = cos(x) 

 

y = cos(x) + cos(5x) + cos(10x) 

 

y = random 

 

FFT for y=cos(x) 

 

FFT for y = cos(x) +cos(5x)+cos(10x) 

 

FFT for y = random 

 

(Figure 5.1) Power /Frequency graphs for various simple equations 
 

By taking the wave-patterns of the fluctuating population rates observed in the previous chapter we 

can perform a similar FFT transformation to establish their underlying frequencies. 

 

Figure 5.2 shows three such a FFT graphs based on the population rate in the Game of Life as it is 

runs over 500 timesteps. The first shows the FFT of the population rate over the entire 500 timesteps. 

The second shows the FFT of the population rate over a subset of this time (the first 100 timesteps) 

and the third shows it over an opposing subset of time (the last 100 timesteps).  
 

500 timesteps 

 

500 timesteps 

 

Timewindow  1 

 

Timewindow 2 

 

(Figure 5.2) Power/frequency graphs for the Game of Life 
 

As can be seen, these subsets of time (timewindows) show distinctly different power/frequency 

distributions and this is of extreme importance for a number of the observations and conclusions that 

shall be drawn up later within this chapter. 
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5.2 POWER/FREQUENCY GRAPHS FOR CA EXAMPLES 

Figures 5.3, 5.4 and 5.5 below show the timewindowed FFT graphs for three of our example CA. 

 

Rate of change graph 

 

FFT for timewindow 1 

 

FFT for timewindow 2 

 

(Figure 5.3) FFT graphs for ORDERED example (rule 1) 

 

Rate of change graph 

 

FFT for timewindow 1 

 

FFT for timewindow 2 

 

(Figure 5.4) FFT graphs for CHAOTIC example (rule 3) 

 

Rate of change graph 

 

FFT for timewindow 1 

 

FFT for timewindow 2 

 

(Figure 5.5) FFT graphs for COMPLEX example (Game of Life) 

 

Looking at the ordered example we see that the first timewindow (which corresponds with the settling 

down period) contains a certain amount of power at only the low frequencies. In the second 

timewindow (once the CA has settled down to its ordered behaviour), we find no power anywhere in 

the system; this is intuitively understood as at this stage the population rate remains constant. 

 

In the chaotic system we find that both timewindows are very similar; they both show an extremely 

small amount of power distributed throughout the entire range of frequencies with no major or 

significant peaks. 

 

Finally, in the complex system, both timewindows show significant amounts of power in low 

frequencies and this is a pattern that is maintained throughout the life time of the complex behaviour. 

 

timewindow 1 

 

 

timewindow 2 

timewindow 1 

 

timewindow 2 

timewindow 1 

 

timewindow 2 

 

timewindow 1 

 

 

timewindow 2 

 

timewindow 1 

 

 

timewindow 2 



© Stephen James 

 

Page 20 of 52 

5.3 CLASSIFYING BEHAVIOUR THROUGH POWER DISTRIBUTION 

These power/frequency graphs are rather telling when considered from the perspective of CA 

behavioural classification. 

 

First, it seems that chaotic behaviour produces a distinctive type of population wave; a wave which 

contains a well distributed (but low) amount of power across the entire frequency band. 

 

For our ordered systems (putting aside our settling down period for a moment) the population wave is 

also rather distinctive. It is generally flat and with little or no power. 

 

Performing an FFT on the population wave of either of these behaviours, therefore, would allow one to 

readily determine the class of behaviour. 

 

For complex behaviour the population wave also contains a rather distinctive pattern, this time having 

a significant amount of power in the lower frequencies. BUT, this pattern is also found within our 

settling down period for ordered CAs (albeit with a slightly lower amount of power). 

 

This similarity prompts us to take another look at the “settling down” period. It has already been 

described as a kind of complex “bath emptying”; where chaos drains away to leave order. 

 

In fact, if one examines certain CA with excessively long settling down periods (and stretches this 

period through the adjustment of the initial density) then this complex draining seems to get ever 

more complex. 

 

Maybe, the settling down period can be considered to be a kind of complexity. The Game of Life, after 

all, ends up in an ordered state after about 300 timesteps; could these 300 timesteps not just be a 

prolonged kind of settling down? 

 

The pattern of the population wave during the settling down period is certainly more indicative of 

complex behaviour than either chaotic or ordered behaviour. Could this not be because the two are 

both examples of the same systemic property? Is complex behaviour just a kind of prolonged settling 

down? 

 

In an attempt to try and clarify, and perhaps answer, this suggestion, let us now make a slight, but 

important, detour through the often castigated world of 1/fb noise. 

5.4 THE UBIQUITY OF 1/FB NOISE 

1/fb noise (often called “flicker noise” or “pink noise”) is cited within many disciplines but generally 

remains a rather poorly understood phenomenon (Milotti 2002). It is has been described by some as a 

“measure of complexity” and has been found to exist in a number of natural and evolutionary systems 

(West & Shlesinger 1990). 

 

It is a measure of power versus frequency and can generally be stated as a phenomenon where the 

power decreases exponentially as the frequency increases. It is more formally defined as:- 

 

  log(power) ≈ log(f)b  where 1≤b≤2 
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Graphically, this is shown as a straight line relationship between log(power) and log(frequency), 

where the gradient of the line corresponds with the variable b. For 1/fb noise to be considered 

interesting, this gradient (b) must be of a significant value (i.e. between 1 and 2). 

 

For some researchers, 1/fb noise is a fabled power-law which describes a kind of temporal scale-

invariance within dynamic systems (in other words, a variance which shows fractal characteristics in 

time rather than in space) and is a ubiquitous phenomenon unique to complex natural systems 

(Gisiger 2001); but for many, such a view is controversial and as such it is widely disputed. 

 

Given the previous power and frequency measures of our CA population dynamics, how do our own 

observations fit within this argument? Figures 5.6, 5.7 and 5.8 show the corresponding log/log plots 

for our earlier example timewindows (note, the dashed lines in each of the graphs demonstrate the 

critical gradients of b=1 and b=2). 

 

Rate of change graph 

 

log(p)/log(f) for timewindow 1 

 

log(p)/log(f) for timewindow 2 

 

(Figure 5.6) Log(power)/Log(frequency) graphs for ORDERED example (rule 1) 

 

Rate of change graph 

 

log(p)/log(f) for timewindow 1 

 

log(p)/log(f) for timewindow 2 

 

(Figure 5.7) Log(power)/Log(frequency)graphs for CHAOTIC example (rule 3) 

 

Rate of change graph 

 

log(p)/log(f) for timewindow 1  

 

log(p)/log(f) for timewindow 2 

 

(Figure 5.8) Log(power)/Log(frequency) graphs for COMPLEX example (Game of Life) 

 

 

timewindow 1 

 

 

timewindow 2 

 

timewindow 1 

 

 

timewindow 2 

 

timewindow 1 

 

 

timewindow 2 
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Ordered behaviour shows a generally dull and flat log/log plot (figure 5.6) whilst chaotic behaviour is 

flat but with a few random peaks (figure 5.7). For both behaviours, the gradient b is distinctly low, 

and from the perspective of 1/fb noise, they are uninteresting. 

 

Complex behaviours, on the other hand, with their significant power in the lower frequency range 

show a log/log plot with a distinct and definite slope. In fact crucially, this slope (b) is found to waver 

constantly between 1 and 2. From the perspective of 1/fb noise, this indicates that extremely 

interesting (or complex) behaviour is being displayed. 

 

To reword this a little, it appears that 1/fb noise is indeed highlighting a kind of complexity within 

cellular automata (if we include our settling down period), and in this light, it can indeed be called a 

“measure of complexity”. 

 

However, it is with extreme caution that we make such a statement; and, as shall be seen, it is not 

really a view that should be held onto too strongly. To generalise this statement to the wider domain 

of “biological complexity” would, at the very least, be misleading and, at the very worst, be flatly 

inaccurate. 

 

As we shall see below, 1/fb noise may highlight a factor which is significant in distinguishing 

complexity within cellular automata, but this factor may be so trivial that its ubiquity is meaningless. 

5.5 UNDERSTANDING 1/FB NOISE 

In order to propose a possible, and perhaps simple, explanation for the ubiquity of 1/fb noise, let us 

take a quick look at the simplest of all wave functions; y=x. 

 

Figure 5.9 shows this simple “wave” and, importantly, the results of a performing a FFT 

transformation upon it. Immediately we can see that it exhibits a high level of power in low 

frequencies dropping off exponentially as the frequency increases. Translated to a log/log plot, this 

forms a perfect display of 1/fb noise (with b≈2). At this point one might, justifiably, ask: if 1/fb noise is 

meant to be a measure for complexity, then how can it so easily be found in such a simple equation? 

 

y=x 

 

FFT of y=x 

 

log(p) / log(f) of y=x 

 

(Figure 5.9) Showing the FFT of y=x  

 

Let us now examine this a little further, but studying the FFT of some other simple equations, to see 

whether there is a commonality amongst those that display 1/fb noise. 
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y = 27+100x 

 

FFT of y = 27+100x 

 

log(p) / log(f) of  y = 27+100x 

 

y = x + random 

 

FFT of y = x + random 

 

log(p) / log(f) of  y = x + random 

 

y=x5 

 

FFT of y=x5 

 

log(p) / log(f) of  y=x5 

 

(Figure 5.10) Examples of equations WITH 1/fb noise 

 

 

y = cos(x) 

 

FFT of y = cos(x) 

 

log(p) / log(f) of  y = cos(x) 

 

y = random 

 

FFT of y = random 

 

log(p) / log(f) of  y = random 

 

y = cos(x)+cos(5x)+cos(10x) 

 

 FFT of y = cos(x)+cos(5x)+cos(10x) 

 

log(p) / log(f) of  y = cos(x)… 

 

(Figure 5.11) Examples of equations WITHOUT 1/fb noise 
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In fact, from these simple examples (figures 5.10, 5.11) we can indeed make a tentative proposal 

regarding the underlying reasons for the ubiquity of 1/fb noise. All of the examples where 1/fb noise is 

found contain a proportional relationship between Y and X. 

 

This observation is particularly stark when contrasting the equations y=random with y=x+random. 

Simply by adding a relationship between y and x, the log(p)/log(f) plot suddenly shows the signature 

of  1/fb noise. Could it simply be that 1/fb noise is highlighting this relationship?  

 

A thorough analysis of this is not provided within this paper, but from our intuitions this may make 

sense. A proportional relationship between Y and X basically means that Y is on some kind of long 

term gradient (or slope) with respect to X. This gradient would possibly be picked up in a Fourier 

Transform as a wave with an exceptionally long wavelength. Such a wave would effectively be 

translated as a large power in a very low frequency (exactly the shape of 1/fb noise). 

  

Let us now go back to our population graphs to see whether the 1/fb “measure of complexity” 

corresponds with a gradient of some kind. 

5.6 COMPLEXITY AND GRADIENTS 

Consider the times where 1/fb noise was found to be present, and contrast them with the times where 

it wasn’t. 

 

We have already stated that 1/fb noise was NOT found during ordered or chaotic behaviours. At such 

times, the population rate has been observed to be flat; fluctuating in either an ordered or random 

fashion around a highly distinctive mean. In such behaviours, therefore, there is NO proportional 

relationship between X and Y. No gradient in Y exists. 

 

Conversely, when 1/fb noise IS present, we see that the population rate is either settling down or 

performing a kind of random walk. The settling down slope obviously fits with our proposed 

explanation of 1/fb noise, but what of the random walk. 

 

One thing that is clear about random walks is that finding a distinctive mean between any two points 

is extremely difficult. In fact, during a random walk one might describe a wave as being on a kind of 

perpetual and constantly changing slope. This paper unfortunately doesn’t have the luxury to express 

this in any greater clarity, but if this idea of a perpetual gradient within a random walk is so, then it 

too fits with our proposed ubiquity of 1/fb noise. 

 

And so, perhaps, we are able to conclude that it is the long term gradient of the population rate that is 

the true signature of complexity (with 1/fb noise simply being a method of highlighting this gradient). 

 

If this IS the case, then our view of long term complex behaviours being prolonged settling down 

periods becomes much clearer. It could be said that it is upon the gradient towards behavioural 

stability that we find complex behaviours and it is through the self-organised extension of this period 

that complexity is able to stave off the dominance of order or chaos.  

 

This view shall be discussed a little further in the concluding chapters of this paper; but first we shall 

get some more evidence for it from the mathematical world of probability. 



© Stephen James 

 

Page 25 of 52 

6 PROBABILISTIC ANALYSIS OF POPULATION DYNAMICS 

In chapter 4 we highlighted a number of observations regarding population dynamics within cellular 

automata. Within this chapter we aim to further understand these observations through an analysis of 

the “Probable Dynamics” of the same systems. 

6.1 THE PROBABILITY OF LIFE 

Imagine, if you will, an infinitely large CA with a random initial configuration where 25% of the cells 

are alive. 

 

If we were to randomly choose a cell within this CA, we can say that there is a probability of 0.25 that 

that cell would be alive – this is the probability of life and it equates to the population rate at time t. 

 

Now consider the Moore neighbourhood of 9 cells (figure 6.1). In our imaginary CA, we can say that 

each cell has a probability of life of 0.25; and hence can easily 

deduce that the chance of being in a configuration where all nine 

cells are alive is 0.259. 

 

Conversely, we know that the chance of not being alive (or being 

dead) is 0.75; and so we can state that the chance of being in a 

configuration where all nine cells are dead is 0.759. 

 

The chance of at least 3 cells being alive, is 0.253, and the chance of at least 6 cells being dead is 

0.756; and so we can state that the chance of being in a configuration where at least 3 cells are alive 

and at least 6 cells are dead (i.e. where exactly 3 cells are alive) is 0.253x0.756 (for each possible 3 

cell configuration). 

 

More formally, the chance of being in a configuration with n alive neighbours is 0.25nx0.759-n
. 

 

Finally, we can say that, for an N neighbourhood CA with a proportion of at alive cells, the probability 

for any cell being in a particular rule sate r (where r has nr alive cells in its configuration) is calculated 

as:- 

 

  rr nN
t

n
tt aarP −−⋅= )1()(      (6.1) 

 

In other words (given at) we can calculate the probability for being in each of the states in a CA 

ruletable. 

 

To clarify this a little, let us return to our imaginary CA with a population of 25% alive cells. It needs 

to have an underlying ruletable for us to calculate the probabilities, so for simplicity’s sake, let us 

assume that it is a 1-dimensional, CA with a 3 cell neighbourhood and let us choose an arbitrary 

ruletable for it (shown in figure 6.2). 

 

As we know that at=0.25, we can use the formula in 6.1 to calculate a probability, P(r), for any 

randomly chosen cell being in a particular configuration (figure 6.2). 

 

N5 N1 N6 

N4 Self N2 

N8 N3 N7 

(Figure 6.1) The Moore 

neighbourhood 
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Rule r N1 Self N2 Result P(rt) 

1     0.421875 

2    ALIVE 0.140625 

3     0.140625 

4    ALIVE 0.046875 

5    ALIVE 0.140625 

6     0.046875 

7     0.046875 

8     0.015625 

(Figure 6.2) Calculating the probabilities for rule states (when at = 0.25) 

 

Take rule state 1 for example; 0 of the 3 cells are alive for this rule (nr=0, N=3). So:- 

 

421875.0)25.01(25.0)( 030 =−⋅= −
trP  

 

And so, the chance of our random cell being in this state is calculated to be roughly 0.42; and so too 

would it be 0.42 for some other randomly chosen cell, and so too for some other etc. 

 

In fact, if we were to randomly choose all of the cells, we could predict that 42% of them will be in 

state 1. Similarly, roughly 14% of then will be in state 2, 14% in state 3 etc. 

 

We know from looking at the ruletable that only those cells found to be in state 2, 4 or 5 will be alive 

at the next timestep; and so we can safely predict that, probabilistically speaking, roughly 33% of our 

imaginary CA is likely to be alive in the next timestep. 

 

So in conclusion, from knowing the underlying ruletable, and the initial proportion of alive cells (at) we 

have been able to calculate a probable proportion of alive cells for the next timestep (at+1). 

 

More formally, with R as the set of rules that result in an alive cell, we can state:- 

 

  ∑
∈

+ =
Rr

tt rPa )(1
      (6.2) 

 

And so in conjunction with (6.1):- 

 

  ∑
∈

−
+ −⋅=

Rr

nN
t

n
tt

rr aaa )1(1
      (6.3) 

 

Because N, and all values of nr in R are all constants derived from the CA ruletable, we can state that 

equation 6.3 above expresses a simple, one-dimensional, function (f) of the form:-  

 

   )(1 tt afa =+       (6.4) 

 

Thus, we have devised a logistic map for the probable dynamics of the population rate. 
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6.2 THE PROBABILITY OF BABIES AND CORPSES 

In a similar vein, we can also derive a probability function for the number of babies and corpses that 

will occur for any given population rate. To recap, a baby simply describes the situation where a dead 

cell becomes alive, and a corpse describes the situation where an alive cell becomes dead. 

 

So, studying the ruletable of our imaginary CA once again (figure 6.3 below) we can highlight the 

results where a baby occurs or when a corpse occurs (simply be examining the rules where the self 

cell and the result are different). 

 

Rule r N1 Self N2 Result P(r) 

1     0.421875 

2    BABY 0.140625 

3    CORPSE 0.140625 

4     0.046875 

5    BABY 0.140625 

6     0.046875 

7    CORPSE 0.046875 

8    CORPSE 0.015625 

(Figure 6.3) Calculating the probabilities for babies and corpses (with at=0.25) 

 

In a similar way to before, we can state that the probability of falling into a configuration that results 

in a baby is P(r2)+P(r5) (in this instance approximately 0.28), leading us to claim that approximately 

28% of our CA will be babies in timestep (t+1). 

 

The probability of leading to a corpse is the sum of P(r3), P(r7) and P(r8); and so we can say that our 

CA will contain approximately 20% of corpses in timestep (t+1). 

 

More formally, by defining two further subsets of our ruletable (with β as the set of rules that leads to 

a baby, and δ as the set of rules that lead to a corpse) we can state:- 

 

  ∑
∈

+ =
βr

tt rPb )(1
      = 

  ∑
∈

−
+ −⋅=

βr

nN
t

n
tt

rr aab )1(1
     (6.6) 

 

And:- 

 

∑
∈

+ =
δr

tt rPc )(1
      = 

  ∑
∈

−
+ −⋅=

δr

nN
t

n
tt

rt aac )1(1
     (6.7) 

 

These equations are not one-dimensional logistic maps as they require an outside variable (at) in 

order to be solved; however, as we shall see, they do provide a useful tool for analysing the probable 

dynamics of cellular automata. 
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6.3 HOW TO PLOT THE DYNAMICS 

The mathematics of dynamical systems has a marvellous tool for analysing one-dimensional logistic 

maps, known as the Cobweb plot. 

 

By plotting the function y=f(x) upon the same set of axis as y=x one can immediately begin to 

visualise the dynamics of a one-dimensional system. For example, where the two paths cross, the 

system can be said to contain a fixed point. This is a point at which the value of the next timestep will 

be the same as the current; or, to put it another way, a point where the value will remain the same 

forever. By then adding a Cobweb plot, one can visualise the dynamic path that will be taken from any 

particular starting value; crucially allowing one to establish whether a fixed point is stable or unstable. 

 

Figure 6.4 shows these plots for the previously defined functions for probable population, birth rate 

and death rates (using the ruleset already provided for our imaginary CA). The x axis is the value at, 

and the y axis is the value of either at+1, bt+1 or ct+1
 respectively. Keeping the convention used in our 

rate-of-change graphs we use a GREEN line for the population rate (at+1), a RED line for our birth rate 

(bt+1), and a BLUE line for our death rate (ct+1). As the birth rate and death rate are NOT logistic 

maps, the concepts of fixed points and cobweb plotting are not relevant for them and so care must be 

taken when considering them on the same axis. 

 

Population rate only 

 

Cobweb plot of Population Rate 

 

All rates 

 

(Figure 6.4) Building a Cobweb plot for the probable dynamics of a CA 

6.4 PROBABLE DYNAMICS GRAPHS FOR CA EXAMPLES 

Armed with these plotting techniques, we can now return to our example CAs. Using the previously 

defined probability functions and the specific ruleset for each CA, we can draw up a series of graphs 

that display the probable dynamics of each. These are provided in the following figures, alongside the 

actual observed dynamics already highlighted in chapter 4. 

 

Probable Population Dynamics 

 

Actual Observed Dynamics 

 

Birth, Death and Population 

 

(Figure 6.5) Probable and actual dynamics of ORDERED rule 1 
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Probable Population Dynamics 

 

Actual Observed Dynamics 

 

Birth, Death and Population 

 

(Figure 6.6) Probable and actual dynamics of ORDERED rule 2 

  

Probable Population Dynamics 

 

Actual Observed Dynamics 

 

Birth, Death and Population 

 

(Figure 6.7) Probable and actual dynamics of CHAOTIC rule 3 

  

Probable Population Dynamics 

 

Actual Observed Dynamics 

 

Birth, Death and Population 

 

(Figure 6.8) Probable and actual dynamics of CHAOTIC rule 4 

  

Probable Population Dynamics 

 

Actual Observed Dynamics 

 

Birth, Death and Population 

 

(Figure 6.9) Probable and actual dynamics of COMPLEX rule 5 (Game of Life) 
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Probable Population Dynamics 

 

Actual Observed Dynamics 

 

Birth, Death and Population 

 

(Figure 6.10) Probable and actual dynamics of COMPLEX rule 6 

  

These graphs highlight a number of important factors relating to the underlying dynamics of CA 

behaviour, and the remainder of this chapter aims to highlight and examine some of the most striking. 

6.5 POPULATION ATTRACTORS OF ORDER AND CHAOS 

The first, and potentially most important, observation relates to the fixed points found within the 

probable population dynamics graphs for our ordered and chaotic systems (an examination of the 

fixed points within complex systems is left for a later section of this chapter). 

 

First, we note that all systems have a fixed point at ZERO (let this be called the Z fixed point). This 

may initially appear somewhat trivial as in the language of CAs it simply means “if no cells are alive 

(at = 0), then no cells will come alive (at+1 = 0)”. However, the “attraction” of this fixed point varies 

crucially amongst the different classes of CA.  

 

For both of our ordered CAs the y=f(x) curve lies entirely below the y=x line and so no further fixed 

points exist. Consequently, this Z fixed point can be shown to be a perfectly stable attractor. In the 

language of population dynamics, this means that the population rate is destined to decay towards 

zero and, crucially, this corresponds precisely with what was previously observed in the real-time 

dynamics for ordered systems. 

 

Conversely, in the probable dynamics plots for our chaotic CA, we find a second fixed point at some 

value higher than zero (let this be the C fixed point). The overall shape of the y=f(x) curve is such 

that this C fixed point can be shown to be a perfectly stable attractor (figure 6.11). Crucially, this once 

again matches what was observed in the real-time dynamics for chaotic systems. Whatever the initial 

conditions, the population rate always converges toward some value higher than zero. 

 

Rule 3 

 

Rule 4 

 

(Figure 6.11) Cobweb plots showing the stability of the C fixed point 
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In fact, the C fixed point seems to coincide exactly with the values observed for the points of 

behavioural stability (see figure 6.12). The C point (or chaotic) attractor drags the population rate up 

to a point of stability, from where the it simply fluctuates in a random manor. 
 

Rule 3 

 

Rule 4 

 

(Figure 6.12) Comparing probable with actual dynamics 

 

6.6 SETTLING DOWN 

Let us now examine another phenomenon of CA behaviour that the probability graphs are able to 

accurately predict (at least within ordered or chaotic systems); the settling down period prior to 

behavioural stability. We have already observed that the two ordered examples have slightly different 

settling down periods; the first (rule 1) settles down after about 20 timesteps, whilst the second (rule 

2) settles down after just 5. By drawing up a cobweb plot with similar initial conditions (at=0.25) we 

can see that this settling down period corresponds exactly with the expected number of steps needed 

to reach the Z attractor.  

 

Rule 1: Settling down takes 20 timesteps 

 

Rule 2: Settling down takes 5 timesteps 

 

(Figure 6.13) Cobweb plots showing the settling down period starting at a0 = 0.25 
 

Within the graph for rule 1, y=f(x) comes very close to y=x, and this can be seen as a kind of “slow 

rut”, during which the rate of change slows right down. Conversely in the graph for rule 2, the gap 

between y=f(x) and y=x is much wider, meaning that the rate of change will be a lot quicker. 
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6.7 BIRTH AND DEATH 

Before moving on to look at the probable dynamics of our complex system, let us first take a brief 

look at the probable dynamics of birth and death across all systems (please note once again that the 

birth and death graphs aren’t setup to provide us with any of the traditional dynamical systems 

analysis of fixed points and attractors; they are merely cross-referenced with the population rate). 

 

The first, intuitive, observation is that the point at which the two rates cross corresponds with the 

point at which the population rate of the system remains stable. In other words, a system will 

maintain a level population rate only when the number of births and deaths are the same (figure 

6.14). 
 

Rule 4 

 

Rule 5 

 

(Figure 6.14) The correspondence of Birth/Death crossover and Population Fixed Points 
 

Secondly, from our earlier comparison of probable dynamics for chaotic systems with real-time 

observations (figure 6.12) we see that this birth/death crossover point also corresponds exactly with 

the distinctive mean that was observed for the two rates once behavioural stability had been reached. 

 

Finally, however, it is important for us to observe a point where the probable dynamics and realtime 

observations don’t quite marry up. Consider once again, the settling down period for our chaotic rule 

3. We observed that the population rates remain in close proximity to one another on the climb 

towards stability, but in looking at the probable dynamic graphs this is at odds with the probabilistic 

behaviour (figure 6.15). 
 

Observed Settling down 

 

Probable dynamics 

 

(Figure 6.15) Improbably birth and death convergence in chaotic settling down 
 

According to probability the birth rate should be significantly higher than the death rate during this 

period; but, for some reason, reality maintains the birth/death status quo. During this complex 

settling down period, the birth and death rate appears to be acting in a somewhat improbable fashion; 

an observation that is unfortunately beyond the scope of this paper but would benefit greatly from 

further investigation. 
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6.8 COMPLEXITY WITHIN PROBABILITY DYNAMICS 

Finally, we look at complexity from the  perspective of our probability dynamic graphs. 

 

In looking at figures 6.9 and 6.10 one immediate and potentially stunning observation arises. It would 

appear that both of our examples contain BOTH a semi-stable Z fixed point AND a semi-stable C fixed 

point with an unstable fixed point providing the bifurcation of stability somewhere in between (figure 

6.16 highlights these fixed points a little more clearly). 

 

Rule 5 

 

Rule 6 

 

(Figure 6.16) Highlighting the Fixed points in examples of complex rulesets 

 

Immediately one might be led into thinking that this is some kind of unique signature of complexity; a 

mix of attractions from the depths of order and the heights of chaos. 

 

One might begin to visualise a system which is kept in continual motion from the forces of ordered 

decay and chaotic growth; a population rate forced into a perpetual gradient in a constantly changing 

landscape. One might further be reminded of the early Complexity Theoretic ideas of phase transitions 

but where complexity lies not on the edge, but on the overlap of chaos and order. 

 

But alas, the results are a little misleading. Not all complex rulesets contain the two attractors of C 

and Z; in fact, a reasonable proportion of them contain no C fixed point at all (making them  look 

probabilistically ordered). As an example, consider the following ruleset for a complex CA (full 

ruletable found in Appendix A). 

 

RULE 7: COMPLEX : MOVING DIAGONAL LINES 

t=1 

 

t=10 

 

t=40 

 

t=100 

 

(Figure 6.17) Snap shots of CA Rule 1, taken every 10 timesteps 

 

Chaos dissolves after around 10 timesteps to leave (predominantly) a series of growing diagonal lines. 

Collisions occur where the lines meet leading to a burst of chaotic activity until on line dominates. 

After a very long period of time, the system reaches an ordered state (where all diagonal lines have 

battled it out and no more collisions will take place). 
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The population and probability dynamic graphs for this new CA are shown below (figure 6.18). 

 

Probable Population Dynamics 

 

Actual Observed Dynamics 

 

Birth, Death and Population 

 

(Figure 6.18) Probable and actual dynamics of CHAOTIC rule 4 

  

 

The observed behaviour of the system is most definitely complex, but the probable dynamics graphs 

seem far more in tune with an ordered system (there is a distinct lack of a C fixed point). In fact, 

accordingly to the probability graphs, the population rate should just dissolve away to nothing (albeit 

reasonably slowly). 

 

From the wider study of all the complex rulesets found within the Looking for Life report we seem to 

find two categories of complex CA ruleset. Some with the two points of attraction, and others with just 

a Z point attractor. 

 

Without giving an evolutionary description of each it is difficult to fully detail the difference between 

the two, but in watching their multifarious evolutions in real-time, they do display subtly distinctive 

characteristics. 

 

For the multi-attractor complex rulesets, the complex behaviour is, for want of a better word, more 

complex. It often contains large, long cycle replicators and pockets of chaos which sporadically fire off 

gliders with a generally long and convoluted cycles of states. 

 

For the more ordered looking complex rulesets, the complex behaviour usually consists of a far 

cleaner environment containing simple 2-state replication and minimal gliders made up of just a 

couple of blocks and with just a couple of periods in their lifecycle. 

 

Figures 6.19 and 6.20 give a handful of screenshots to try and help illustrate this difference. 

 

Replicating squares 

 

Diagonal Snakes 

 

Double Lines 

 

Double lines and Diagonals 

 

(Figure 6.19) Example screenshots of ordered complexity 
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Game of Life 

 

Replicating Glider Guns 

 

Snowflakes 

 

Big Blobs 

 

(Figure 6.20) Example screenshots of multi-attractor (chaotic) complexity 

 

To take this is little further, it might be said that the complex behaviour found within CAs varies all the 

way from simple (2 or 3 state cyclical patterns) to much more unusual (high-state) cycles surrounded 

with pockets of chaos. In other words, there is a kind of scale, a kind of “strength of complexity”, 

which corresponds (to some degree) with the observations from the probability dynamics graphs. The 

louder the chaotic attractor, the more complex the behaviour found within the system. 

 

This admittedly loose and tentative observation introduces the concept of a “strength of complexity” 

and is looked at a little further in the concluding chapter of this report. For the most part, however, 

this idea really needs much further investigation if it is to gain credibility and, most regrettably, this 

cannot be achieved within the bounds of this paper. 

6.9 CLASSIFICATION THROUGH PROBABILITY DYNAMICS 

Through the wider study of a great many ordered, chaotic and complex rulesets, it seems that the 

following statements can be made regarding the classification of CA behaviour through the study of 

probability dynamics. 

 

Firstly, all chaotic CA contain a perfectly stable C-point attractor toward which the population rate will 

converge. 

 

Secondly, all ordered CA lack this C-point attractor and, instead, contain a perfectly stable Z point 

attractor; leading the population rate to dissolve quickly away (what is not captured by the probable 

dynamics is the extent to which simple blinkers and blocks may be seen – this is discussed within the 

concluding chapter of this paper). 

 

Finally, about two thirds of complex rulesets contain two, semi stable, attractors with the rest 

containing just a single, stable, Z point. Those that have two attractors show a far “stronger” kind of 

complexity than those that only contain one. 

 

From these observations we can conclude that a CA with a perfectly stable C-point attractor can be 

predicted to be chaotic; and that, similarly, a system with a semi-stable C-point attractor can be 

predicted to be strongly complex.  

 

Unfortunately, the lack of a C-point attractor may indicate either an ordered system or a weakly 

complex one and so we do not yet have a complete prediction scheme from probability dynamics. It is 

noted, however, that being able to predict chaotic and strongly complex behaviours is a faculty that is 

of importance enough to make probability dynamics a study worth further examination.  
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7 CONCLUSIONS 

7.1 REFINED DEFINITIONS OF COMPLEXITY 

To conclude, we shall now attempt to combine some of these observations in order to refine the 

current definitions of order chaos and complexity within cellular automata; but first let us remind 

ourselves of the link between entropy and population rate highlighted in chapter 4. It was stated that 

as the population rate rises, it drives up the entropy of the system (through the generation of a wider 

repertoire of rule-states). 

 

Consider now a dynamic system with a stable C point attractor. Probability alone dictates that the 

population rate will naturally adjust to reach this point of stability. During this “settling down” the 

entropy of the system fluctuates in accordance with the population rate’s own fluctuation; if the 

population rate makes a gentle incline, so too will the entropy. This happens all the way towards the 

point of stability when both population and entropy will remain at a reasonably high value. In short, 

the existence of the C-point attractor pulls the system to a point of high and stable entropy – a point, 

in thermodynamics, known as chaos. 

 

Next consider a perfectly ordered dynamical system where all cells eventually die (Wolfram Class I). 

Such a system contains a perfectly stable Z point attractor and the population rate swiftly drops off to 

zero. This drop pulls the entropy of the system down with it leaving the system, eventually, in a state 

of zero entropy – a point of thermodynamic order. 

 

Some dynamical systems don’t quite die away to complete quiescence, they leave behind exceedingly 

simple blocks or blinkers (Wolfram Class II). Although close to perfect order (and most definitely a 

kind of behavioural stability) one may like to reconsider this class as the first step in an increase in 

behavioural complexity. The population rate in such a system drops away extremely quickly towards 

zero (as predicted by the probable dynamics) but is kept slightly away from zero by this slight rise of 

complexity. In such a system, the entropy, dragged by the low population rate, is extremely low, and 

extremely stable, but it is not quite in a state of perfect order. 

 

As we increase the complexity these blocks and blinkers become a little more complex and start to 

contain a kind of basic motion or ordered complexity. An example of this motion is given in figure 7.1 

below (taken directly from our rule 7). 

 

   

   

   

 

   

   

   

 

 

   

   

   

 

   

   

   

 

 

 

       

       

       

       

       

       

 

       

       

       

       

       

       
 

(Figure 7.1) Example of emergent motion (ordered complexity) 
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In such a system, the population rate drops again towards zero, but collisions of emergent moving 

particles add a certain amount of random-walk noise into the proceedings; this is mirrored within the 

system’s entropy which shares these occasional fluctuations but remains at a generally low and stable 

value. 

 

As the complexity is increased further, the C-point attractor begins to gain strength and the system 

starts to become partly driven by chaos. At this point (whilst neither the C and Z point attractor is 

fully stable) we see much more advanced kinds of behaviour, including complex replicators and multi-

state movement (gliders). The population rate fluctuations become far louder and so too do the 

corresponding fluctuations of entropy. 

 

As the C-point attractor gets stronger and stronger, the complexity of the system is eventually 

dragged to a point where chaos (the most complex of all systemic behaviours) finally takes hold. 

 

This hypothesised rise in complexity within dynamic systems is only tentatively proposed and requires 

a great deal more investigation in order to gain acceptance as a general and measurable property of 

cellular automata (and perhaps complex dynamic systems in general). It bears great semblance with 

the early ideas proposed by Chris Langton and the Santa Fe Institute (Langton 1990); but has a 

crucial shift in including fixed and periodic (Class II) behaviours as basic examples of complex 

emergent phenomenon. 

 

The rise is partly observed within the probability diagrams outlined in chapter 6, but unfortunately it 

isn’t yet stark enough to be considered a measurable quantity. For a general illustration, however, the 

purposely evocative series of diagrams in figure 8.1 aims to show an initial flavour of how this rise in 

complexity may look once observed. 

  

Pure order 

 

Blinkers 

 

Basic Motion 

 

High Complexity 

 

Chaos 

 

 

increasing complexity 

(Figure 8.1) The rise of complexity 
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8 PROPOSITIONS 

8.1 A MEASURE OF IMPROBABILITY 

Let us now take a look at a possible piece of future work which aims to create a firmer measure for 

this hypothesised rise in complexity. 

 

Chaotic systems, it seems, work in a probable fashion (in other words, they are in accordance with the 

probable dynamic of the system). 

 

Purely ordered systems (ones which end up in a purely quiescent state) also work in a probable 

fashion (one that is in accordance with the probable dynamics of the system). 

 

The rise of blinkers, and the further rise of motion, seems to equate to a general decrease in 

accordance with the probable dynamics of the system (or in other words, a rise of improbability). The 

more convoluted the emergent phenomena, the more improbable it becomes (the less in accordance it 

is with the probable dynamics predicted for the system). Perhaps, therefore, one could equate a rise 

in complexity with a rise in improbability. 

 

If one were to be able to determine a mathematical model of the actual dynamics (say from a test set 

of initial conditions) and combine this with the models of probability one could determine a measure 

for improbability. As such, one would have a potential measure for complexity within cellular 

automata. 

8.2 APPLICATIONS FOR THE MATHEMATICAL METHODS 

The measurements of Population Dynamics outlined in chapter 3 are not exactly new to the field of 

cellular automata research; however, until now they have not been precisely defined so as to 

represent a formally methodology for CA analysis. These methods, free from the binds of cell-states, 

are measurable for all CA of any size or shape and as such they represent a power tool for cross 

referencing amongst all CA research. It is also suggested that these methods will prove to be general 

enough to move beyond the basic examination of CAs to the wider fields of discrete dynamic systems 

(with particular focus on the notions of complexity within such systems). For example, one might 

extend this study to observe the global behaviours of Random Boolean Networks and contrast the 

results with this research to gain a wider understanding of complexity within both systems. 

 

The introduction of probability theory and the shift from rule-space to probability space in chapter 6 

has proven to be an exceptionally useful method of moving from the world of discrete dynamics to the 

more attractive world of continuous dynamical systems. By defining a logistic map for a macroscopic 

behaviour (the population rate) based on the microscopic discrete dynamical rules of the system, it 

was possible to use the standard visualisation techniques adopted for continuous dynamics systems to 

view the probable attractors of this behaviour. Such a technique may prove to have a much wider 

scope of application within a number of different fields ranging from economics to the burgeoning field 

of mathematical biology. Any complex system based on a simple set of discrete rules may benefit 

from the introduction of a probabilistic analysis of likely macroscopic behaviours. 
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8.3 LIFE FAR FROM EQUILIBRIUM 

Let us close this paper with a look at the complexity’s place within the general sciences of systems 

(particularly within the resurgent field of thermodynamics). An initial look at the timeline graphs in 

chapter 4 showed a “settling down” period for both ordered and chaotic behaviour, after which a 

period of behavioural stability (or behavioural equilibrium) was observed to exist. For complex 

behaviour, no such point of behavioural stability was observed. 

 

Through the Fourier transforms of chapter 5, it was found that these behavioural equilibria (ordered or 

chaotic) both fluctuate with generally insignifant amounts of power distributed throughout the 

frequency band. Complex and settling down behaviours, on the other hand, both possess a 

disproportionate amount of power in the low frequencies. From the perspective of 1/fb noise, these 

power distributions seemed indicative of the presence of a “gradient” within the waveform. As both 

settling down and complex behaviours possess such a power distribution, it was proposed that both 

represent a slope towards behavioural stability; the only difference being how long this slope is able to 

be maintained. 

 

From Chapter 6’s examinations from the world of probability it was found that the settling down 

period could be redefined as the process of reaching a systemic attractor (a point of systemic 

equilibrium); or, in other words, that settling down was a process of equilibrialisation. 

 

If complex behaviour is just a prolonged settling down period, then it makes sense that it is the 

interactions of emergent particles which are the means for this proloinging to take place. In other 

words, complex emergent phenemomena are the means by which a system keeps itself far from 

equilibrium (see also Prigogine 1967). 

 

It is interesting to contemplate that (for CA at least) the behaviours that maintain this “far from 

equilibrium” position for the longest are those that contain gliders (emergent particles able to move) 

and replicators (emerging particles able to reproduce). 

 

Movement and reproduction, the prolongers of systemic disequilibrialium and the stavers of order and 

chaos, also happen to be two of the fundamental properties of Life. 

 

In modern thermodynamics, gradient reduction and the principle of maximum entropy production 

have already begun to make a similar crossover between Life and its position within our systemic 

Universe. Schneider and Sagan, authors of a wonderful book on the subject, capture these ideas 

magnificently when they declare that “nature abhors a gradient” (Schneider & Sagan 2005). 

 

From the perspective of this paper, however, if nature abhors a gradient, maybe complexity, and Life, 

adores one. 
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APPENDIX A: CA RULETABLES 

The CA ruletables are defined using the following binary numbering scheme. 

Moore neighbourhood numbering scheme 

32 2 64 

16 1 4 

256 8 128 

 

 

Examine rule = 354 

32 2 64 

   

256   

 

(Figure A.1) Binary numbering scheme for CA ruletables 

 

RULE 1: ORDERED: WITH A SLOW DECAY 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

x1  

x2  

x3  

x4  

x5  

x6  

x7  

x8  

x9  

x10  

x11  

x12  

x13  

x14  

x15  

X16  

 

RULE 2: ORDERED: WITH A QUICK DECAY 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

x1  

x2  

x3  

x4  

x5  

x6  

x7  

x8  

x9  

x10  

x11  

x12  

x13  

x14  

x15  

X16  

 

RULE 3: CHAOTIC: WITH A LOW Λ 
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RULE 4: CHAOTIC: WITH A HIGH Λ 
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RULE 5: COMPLEX: GAME OF LIFE 
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RULE 6: COMPLEX: REPLICATING GLIDER GUNS 
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RULE 7: COMPLEX: MOVING DIAGONAL LINES 
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APPENDIX B: CATS SCREEN SHOTS 

CATSMAIN 
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(Figure B.1) catsMAIN screen 
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(Figure B.2) catsMAIN screen 
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(Figure B.3) catsMAIN screen 
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CATSCREATE 

 

 

 

 

 

CA Creation buttons 

 

CA Target Options 
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Message board 

(Figure B.4) catsMAIN screen 

CATSFILE 

 

 

 

 

Import Rule from CSV 

 

Export Rule to CSV 

(Figure B.5) catsMAIN screen 
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APPENDIX C: SOURCE CODE 

The CATS Project is split into four main elements.  

 

First, the main function sets up two core global classes. One 

for the CA and one for its STATS. This function also opens the 

catsMAIN screen. 

 

Next, there is the source code which underlies all of the 

screens (shown in Appendix B). This code captures all user 

interaction requests and changes the properties within the 

global classes accordingly. 

 

Finally there are the two main classes and their methods. 

 

classCA – contains all properties and methods relevant for the 

setup and running of cellular automata. 

 

classStats – contains all of the properties and methods 

required for the setup and running of Population Dynamic 

statistical information 

 

MAIN FUNCTION  

function[] = cats() 
    clear; 
     
    global fld; 
    global theCA; global pauseca; global stats; 
    global figMain; global figRun; global figCreate; global figAnalyse; global figFiles; global figLandscape; 
     
    fld = 'C:\Data\University\Courses\MScProject\'; 
    initfile = 'Chosen Few\2 state - 2 dimensions\GoL.mat'; 
     
    theCA = classCA; 
    stats = classStats; 
    theCA = classCALoad(theCA, cat(2,fld,initfile)); 
     
    figMain     = openfig('catsMain.fig'); 
    catsMain('setupscreen'); 
end 

 
 
 

SCREEN – CATSMAIN 

function varargout = catsMain(varargin) 
    gui_Singleton = 1; 
    gui_State = struct('gui_Name',       mfilename, ... 
                       'gui_Singleton',  gui_Singleton, ... 
                       'gui_OpeningFcn', @catsMain_OpeningFcn, ... 
                       'gui_OutputFcn',  @catsMain_OutputFcn, ... 
                       'gui_LayoutFcn',  [] , ... 
                       'gui_Callback',   []); 
    if nargin && ischar(varargin{1}) 
        if (strcmp(varargin{1},'setupscreen') == 1) 
            setupscreen(); 
        else 
            gui_State.gui_Callback = str2func(varargin{1}); 
        end 
    end 
  
    if nargout 
        [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
    else 
        gui_mainfcn(gui_State, varargin{:}); 
    end     
end 
  
function catsMain_OpeningFcn(hObject, eventdata, handles, varargin) 
    handles.output = hObject;  guidata(hObject, handles); 
end 
  
function varargout = catsMain_OutputFcn(hObject, eventdata, handles) 
    varargout{1} = handles.output; 
end 
  
function cmdrunca_Callback(hObject, eventdata, handles) 
    global figRun; figRun = openfig('catsRun.fig'); catsRun('setupscreen'); 
end 
  
function cmdimportca_Callback(hObject, eventdata, handles) 
    global figFiles; figFiles = openfig('catsFiles.fig'); 
end 
  
function cmdanalyseca_Callback(hObject, eventdata, handles) 
    global figAnalyse; figAnalyse = openfig('catsAnalyse.fig'); catsAnalyse('setupscreen'); 
end 
  
function cmdcreateca_Callback(hObject, eventdata, handles) 
    global figCreate; figCreate = openfig('catsCreate.fig'); 
end 
  
function cmdlandscapeca_Callback(hObject, eventdata, handles) 
    global figLandscape; figLandscape = openfig('catsLandscape.fig'); 
end 
  
function cmdloadca_Callback(hObject, eventdata, handles) 
    global theCA; global fld; 
    global figMain; handles = guihandles(figMain); 
     
    a = actxcontrol('MSComDlg.CommonDialog.1'); 
    a.InitDir = fld; a.Filename = ''; a.Filter = 'mat'; a.ShowOpen; 
    theCA = classCALoad(theCA, a.Filename); 
    setupscreen(); release(a); 
end 
  
function cmdsaveca_Callback(hObject, eventdata, handles) 
    global theCA; global fld; global figMain; handles = guihandles(figMain); 
     
    a = actxcontrol('MSComDlg.CommonDialog.1'); 
    a.InitDir = fld; a.Filename = ''; a.Filter = 'mat'; a.ShowSave; 
    theCA = classCASave(theCA, cat(2,regexprep(a.Filename,'.mat',''),'.mat')); 
    setupscreen(); release(a); 
end 
  
function setupscreen() 
    global theCA;  global figMain; handles = guihandles(figMain); 
     
    set(handles.filename,'String',theCA.filename); 
    set(handles.nodim,'String',num2str(theCA.nodim)); 
    set(handles.nostates,'String',num2str(theCA.nostates)); 
    set(handles.noneighbours,'String',num2str(theCA.noneighbours)); 
    set(handles.lambda,'String',num2str(theCA.lambda)); 
end 

 

SCREEN - CATSRUN 

function varargout = catsRun(varargin) 
    gui_Singleton = 1; 
    gui_State = struct('gui_Name',       mfilename, ... 
                       'gui_Singleton',  gui_Singleton, ... 
                       'gui_OpeningFcn', @catsRun_OpeningFcn, ... 
                       'gui_OutputFcn',  @catsRun_OutputFcn, ... 
                       'gui_LayoutFcn',  [] , ... 
                       'gui_Callback',   []); 
    if nargin && ischar(varargin{1}) 
        if (strcmp(varargin{1},'setupscreen') == 1) 
            setupscreen(); 
        else 
            gui_State.gui_Callback = str2func(varargin{1}); 
        end 
    end 
    if nargout 
        [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
    else 
        gui_mainfcn(gui_State, varargin{:}); 
    end 
end 
  
function catsRun_OpeningFcn(hObject, eventdata, handles, varargin) 
    handles.output = hObject; 
    guidata(hObject, handles); 
end 
  
function varargout = catsRun_OutputFcn(hObject, eventdata, handles) 
    varargout{1} = handles.output; 
end 
  
function cmdrestartca_Callback(hObject, eventdata, handles) 
    global theCA; global pauseca; 
    global figRun; handles = guihandles(figRun); 
  
    set(handles.cmdrestartca,'Enable','off'); 
    set(handles.gridsize,'Enable','off'); 
    set(handles.initpopulation,'Enable','off'); 
    set(handles.cmdstopca,'Enable','on'); 
    set(handles.cmdresetca,'Enable','off'); 
     
    pauseca = 0; 
    theCA = classCARun(theCA,0,0); 
     
    if (theCA.currenttimestep >= theCA.maxt) 
        set(handles.cmdresetca,'Enable','on'); 
        set(handles.gridsize,'Enable','on'); 
        set(handles.initpopulation,'Enable','on'); 
        set(handles.cmdstopca,'Enable','off'); 
        set(handles.cmdrestartca,'Enable','off'); 
    end 
end 
  
function cmdstopca_Callback(hObject, eventdata, handles) 
    global theCA; global pauseca; 
    global figRun; handles = guihandles(figRun); 
     
    set(handles.cmdrestartca,'Enable','on'); 
    set(handles.cmdstopca,'Enable','off'); 
    set(handles.cmdresetca,'Enable','on'); 
    set(handles.gridsize,'Enable','on'); 
    set(handles.initpopulation,'Enable','on'); 
     
    pauseca = 1; 
end 
  
function cmdresetca_Callback(hObject, eventdata, handles) 
    global theCA; global pauseca; global stats; 
    global figRun; handles = guihandles(figRun); 
     
    set(handles.cmdrestartca,'Enable','off'); 
    set(handles.gridsize,'Enable','off'); 
    set(handles.initpopulation,'Enable','off'); 
    set(handles.cmdstopca,'Enable','on'); 
    set(handles.cmdresetca,'Enable','off'); 
     
    theCA.gridsize         = str2num(get(handles.gridsize,'String')); 
    theCA.maxt             = str2num(get(handles.timesteps,'String')); 
    theCA.drawspeed        = str2num(get(handles.drawspeed,'String')); 
    theCA.initpopulation   = str2num(get(handles.initpopulation,'String')); 
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    pauseca = 0; 
    stats = classStatsReset(stats); 
    theCA = classCASetDim(theCA); 
    theCA = classCASetRun(theCA); 
    theCA = classCARun(theCA,0,0); 
     
    if (theCA.currenttimestep >= theCA.maxt) 
        set(handles.cmdresetca,'Enable','on'); 
        set(handles.gridsize,'Enable','on'); 
        set(handles.initpopulation,'Enable','on'); 
        set(handles.cmdstopca,'Enable','off'); 
        set(handles.cmdrestartca,'Enable','off'); 
    end 
end 
  
function timesteps_Callback(hObject, eventdata, handles) 
    global theCA; 
    global figRun; handles = guihandles(figRun); 
     
    theCA.maxt = str2num(get(handles.timesteps,'String')); 
end 
  
function initpopulation_Callback(hObject, eventdata, handles) 
    global theCA; 
    global figRun; handles = guihandles(figRun); 
     
    theCA.initpopulation = str2num(get(handles.initpopulation,'String')); 
end 
  
function drawspeed_Callback(hObject, eventdata, handles) 
    global theCA; 
    global figRun; handles = guihandles(figRun); 
     
    theCA.drawspeed = str2num(get(handles.drawspeed,'String')); 
end 
  
function setupscreen() 
    global theCA;  
    global figRun; handles = guihandles(figRun); 
     
    set(handles.gridsize,'String',theCA.gridsize); 
    set(handles.timesteps,'String',theCA.maxt); 
    set(handles.currenttimestep,'String',theCA.currenttimestep); 
    set(handles.initpopulation,'String',theCA.initpopulation); 
    set(handles.currentpopulation,'String',theCA.currentalives); 
    set(handles.drawspeed,'String',theCA.drawspeed); 
end 
  
function scrollright_Callback(hObject, eventdata, handles) 
    global theCA; global pauseca; global stats; global figRun; 
     
    if (pauseca == 0) cmdstopca_Callback(hObject, eventdata, handles); end 
    for x = theCA.gridsize:-1:2 
        tmpCells(:,x) = theCA.cells(:,x-1); 
    end 
    tmpCells(:,1) = theCA.cells(:,theCA.gridsize); 
     
    theCA.cells = tmpCells; 
    imgr            = reshape(stats.colmap(theCA.cells+1,1),theCA.griddim); 
    imgg            = reshape(stats.colmap(theCA.cells+1,2),theCA.griddim); 
    imgb            = reshape(stats.colmap(theCA.cells+1,3),theCA.griddim); 
     
    drawhandles = guihandles(figRun); axes(get(figRun,'CurrentAxes')); IMH = 
image(cat(3,imgr,imgg,imgb)); 
end 
  
function scrollleft_Callback(hObject, eventdata, handles) 
    global theCA; global pauseca; global stats; global figRun; 
     
    if (pauseca == 0) cmdstopca_Callback(hObject, eventdata, handles); end 
    for x = 1:1:theCA.gridsize-1 
        tmpCells(:,x) = theCA.cells(:,x+1); 
    end 
    tmpCells(:,theCA.gridsize) = theCA.cells(:,1); 
     
    theCA.cells = tmpCells; 
    imgr            = reshape(stats.colmap(theCA.cells+1,1),theCA.griddim); 
    imgg            = reshape(stats.colmap(theCA.cells+1,2),theCA.griddim); 
    imgb            = reshape(stats.colmap(theCA.cells+1,3),theCA.griddim); 
     
    drawhandles = guihandles(figRun); axes(get(figRun,'CurrentAxes')); IMH = 
image(cat(3,imgr,imgg,imgb)); 
end 
  
function scrolldown_Callback(hObject, eventdata, handles) 

    global theCA; global pauseca; global stats; global figRun; 
     
    if (pauseca == 0) cmdstopca_Callback(hObject, eventdata, handles); end 
    for y = theCA.gridsize:-1:2 
        tmpCells(y,:) = theCA.cells(y-1,:); 
    end 
    tmpCells(1,:) = theCA.cells(theCA.gridsize,:); 
     
    theCA.cells = tmpCells; 
    imgr            = reshape(stats.colmap(theCA.cells+1,1),theCA.griddim); 
    imgg            = reshape(stats.colmap(theCA.cells+1,2),theCA.griddim); 
    imgb            = reshape(stats.colmap(theCA.cells+1,3),theCA.griddim); 
     
    drawhandles = guihandles(figRun); axes(get(figRun,'CurrentAxes')); IMH = 
image(cat(3,imgr,imgg,imgb)); 
end 
  
function scrollup_Callback(hObject, eventdata, handles) 
    global theCA; global pauseca; global stats; global figRun; 
     
    if (pauseca == 0) cmdstopca_Callback(hObject, eventdata, handles); end 
    for y = 1:1:theCA.gridsize-1 
        tmpCells(y,:) = theCA.cells(y+1,:); 
    end 
    tmpCells(theCA.gridsize,:) = theCA.cells(1,:); 
     
    theCA.cells = tmpCells; 
    imgr            = reshape(stats.colmap(theCA.cells+1,1),theCA.griddim); 
    imgg            = reshape(stats.colmap(theCA.cells+1,2),theCA.griddim); 
    imgb            = reshape(stats.colmap(theCA.cells+1,3),theCA.griddim); 
     
    drawhandles = guihandles(figRun); axes(get(figRun,'CurrentAxes')); IMH = 
image(cat(3,imgr,imgg,imgb)); 
end 
  
function gridsize_Callback(hObject, eventdata, handles) 
    global theCA; global pauseca; global stats;  
    global figRun; handles = guihandles(figRun); 
     
    if (pauseca == 0) cmdstopca_Callback(hObject, eventdata, handles); end 
     
    tmpCA = theCA; 
    tmpCA.gridsize = str2num(get(handles.gridsize,'String')); 
    tmpCA = classCASetDim(tmpCA); 
     
    tmpCA.cells = zeros(tmpCA.griddim); 
    if (tmpCA.nodim == 2)  
        if (tmpCA.gridsize > theCA.gridsize) 
            gridblock = ceil((tmpCA.gridsize-theCA.gridsize)/2); 
            tmpCA.cells(gridblock:1:gridblock+theCA.gridsize-1,gridblock:1:gridblock+theCA.gridsize-1) = 
theCA.cells; 
        else 
            gridblock = ceil((theCA.gridsize-tmpCA.gridsize)/2); 
            tmpCA.cells = theCA.cells(gridblock:1:gridblock+tmpCA.gridsize-
1,gridblock:1:gridblock+tmpCA.gridsize-1); 
        end 
    end  
         
    theCA = tmpCA; 
    if (theCA.nodim == 2) 
        imgr            = reshape(stats.colmap(theCA.cells+1,1),theCA.griddim); 
        imgg            = reshape(stats.colmap(theCA.cells+1,2),theCA.griddim); 
        imgb            = reshape(stats.colmap(theCA.cells+1,3),theCA.griddim); 
        drawhandles = guihandles(figRun); axes(get(figRun,'CurrentAxes')); IMH = 
image(cat(3,imgr,imgg,imgb)); 
    end 
    end 

 

SCREEN – CATSANALYSE 

function varargout = catsAnalyse(varargin) 
    gui_Singleton = 1; 
    gui_State = struct('gui_Name',       mfilename, ... 
                       'gui_Singleton',  gui_Singleton, ... 
                       'gui_OpeningFcn', @caAnalyse_OpeningFcn, ... 
                       'gui_OutputFcn',  @caAnalyse_OutputFcn, ... 
                       'gui_LayoutFcn',  [] , ... 
                       'gui_Callback',   []); 
    if nargin && ischar(varargin{1}) 
        if (strcmp(varargin{1},'setupscreen') == 1) 
            setupscreen(); 
        else 

            gui_State.gui_Callback = str2func(varargin{1}); 
        end 
    end 
  
    if nargout 
        [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
    else 
        gui_mainfcn(gui_State, varargin{:}); 
    end 
end 
  
function caAnalyse_OpeningFcn(hObject, eventdata, handles, varargin) 
    handles.output = hObject; 
    guidata(hObject, handles); 
end 
  
function varargout = caAnalyse_OutputFcn(hObject, eventdata, handles) 
    varargout{1} = handles.output; 
end 
  
function showMinMax_Callback(hObject, eventdata, handles) 
    global figAnalyse; handles = guihandles(figAnalyse); 
    global stats; stats.showMinMax = get(handles.showMinMax,'Value'); 
end 
  
function showRates_Callback(hObject, eventdata, handles) 
    global figAnalyse; handles = guihandles(figAnalyse); 
    global stats; 
     
    stats.showRates = 1; stats.showParts = 0; stats.showFreq = 0; 
    set(handles.showRates,'Value',1); 
     
    stats.showL = get(handles.showL,'Value'); 
    stats.showLB = get(handles.showLB,'Value'); 
    stats.showLD = get(handles.showLD,'Value'); 
    stats.showLSA = get(handles.showLSA,'Value'); 
    stats.showLSD = get(handles.showLSD,'Value'); 
     
    stats.showP = get(handles.showP,'Value'); 
    stats.showBA = get(handles.showBA,'Value'); 
    stats.showBD = get(handles.showBD,'Value'); 
    stats.showCA = get(handles.showCA,'Value'); 
    stats.showCD = get(handles.showCD,'Value'); 
    stats.showSA = get(handles.showSA,'Value'); 
    stats.showSD = get(handles.showSD,'Value'); 
    stats.showE = get(handles.showE,'Value');; 
     
    stats.showSpringy = get(handles.showSpringy,'Value'); 
end 
  
function showParts_Callback(hObject, eventdata, handles) 
    global figAnalyse; handles = guihandles(figAnalyse); 
    global stats; stats.showRates = 0; stats.showParts = 1; stats.showFreq = 0; 
    set(handles.showParts,'Value',1); 
end 
  
function showFreq_Callback(hObject, eventdata, handles) 
    global figAnalyse; handles = guihandles(figAnalyse); 
    global stats; stats.showRates = 0; stats.showParts = 0; stats.showFreq = 1; 
    set(handles.showFreq,'Value',1); 
    stats.showFull = get(handles.showFull,'Value'); 
    stats.showRecent = get(handles.showRecent,'Value'); 
    stats.showXFreq = get(handles.showXFreq,'Value'); 
    stats.showXLogFreq = get(handles.showXLogFreq,'Value'); 
    stats.showXPeriod = get(handles.showXPeriod,'Value'); 
    stats.showYAmp = get(handles.showYAmp,'Value'); 
    stats.showYPower = get(handles.showYPower,'Value'); 
    stats.showYLogPower = get(handles.showYLogPower,'Value'); 
end 
  
function setupscreen() 
    global stats;  
    global figAnalyse; handles = guihandles(figAnalyse); 
         
    set(handles.showL,'Value',stats.showL); 
    set(handles.showLB,'Value',stats.showLB); 
    set(handles.showLD,'Value',stats.showLD); 
    set(handles.showLSA,'Value',stats.showLSA); 
    set(handles.showLSD,'Value',stats.showLSD); 
     
    set(handles.showP,'Value',stats.showP); 
    set(handles.showBA,'Value',stats.showBA); 
    set(handles.showBD,'Value',stats.showBD); 
    set(handles.showCA,'Value',stats.showCA); 
    set(handles.showCD,'Value',stats.showCD); 
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    set(handles.showSA,'Value',stats.showSA); 
    set(handles.showSD,'Value',stats.showSD); 
    set(handles.showE,'Value',stats.showE); 
     
    set(handles.showMinMax,'Value',stats.showMinMax); 
    set(handles.showSpringy,'Value',stats.showSpringy); 
end 
  
function saveimage_Callback(hObject, eventdata, handles) 
    global fld; global figAnalyse; handles = guihandles(figAnalyse); 
     
    a = actxcontrol('MSComDlg.CommonDialog.1',[0,600,5,5]); 
    a.InitDir = fld; 
    a.Filename = ''; 
    a.Filter = 'bmp'; 
    a.ShowSave; 
    thefilename = cat(2,regexprep(a.Filename,'.bmp',''),'.bmp'); 
    release(a); 
     
    calcaxes = get(figAnalyse,'CurrentAxes'); 
    F = getframe(figAnalyse,[5,5,555,485]); 
    [X, Map] = frame2im(F); 
    imwrite(X, thefilename, 'bmp'); 
end 

 

SCREEN – CATSCREATE 

function varargout = catsCreate(varargin) 
    gui_Singleton = 1; 
    gui_State = struct('gui_Name',       mfilename, ... 
                       'gui_Singleton',  gui_Singleton, ... 
                       'gui_OpeningFcn', @catsCreate_OpeningFcn, ... 
                       'gui_OutputFcn',  @catsCreate_OutputFcn, ... 
                       'gui_LayoutFcn',  [] , ... 
                       'gui_Callback',   []); 
    if nargin && ischar(varargin{1}) 
        gui_State.gui_Callback = str2func(varargin{1}); 
    end 
  
    if nargout 
        [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
    else 
        gui_mainfcn(gui_State, varargin{:}); 
    end 
end 
  
function catsCreate_OpeningFcn(hObject, eventdata, handles, varargin) 
    handles.output = hObject; 
    guidata(hObject, handles); 
end 
  
function varargout = catsCreate_OutputFcn(hObject, eventdata, handles) 
    varargout{1} = handles.output; 
end 
  
function cmdcreaterandom_Callback(hObject, eventdata, handles) 
    global figCreate; handles = guihandles(figCreate); 
    createCAByGA(handles,'',0) 
end 
  
function cmdcreatecomplex_Callback(hObject, eventdata, handles) 
    global figCreate; handles = guihandles(figCreate); 
     
    probmethod = get(handles.probmethod,'Value'); 
    if probmethod == 1 
        createCAByGA(handles,'Complex',1) 
    else 
        createCAByGA(handles,'Complex',0) 
    end 
end 
  
function cmdcreatechaos_Callback(hObject, eventdata, handles) 
    global figCreate; handles = guihandles(figCreate); 
     
    probmethod = get(handles.probmethod,'Value'); 
    if probmethod == 1 
        createCAByGA(handles,'Chaotic',1) 
    else 
        createCAByGA(handles,'Chaotic',0) 
    end 
end 
  

function cmdcreateorder_Callback(hObject, eventdata, handles) 
    global figCreate; handles = guihandles(figCreate); 
     
    probmethod = get(handles.probmethod,'Value'); 
    if probmethod == 1 
        createCAByGA(handles,'Ordered',1) 
    else 
        createCAByGA(handles,'Ordered',0) 
    end 
end 
  
%-------------------------- 
% CREATE CA  
%-------------------------- 
function createCAByGA(handles,whichSort,probmethod) 
    % Define Constants 
    %----------------- 
    global fld; global theCA; global pauseca; global stats; 
    global figMain; global figAnalyse; 
     
    createdim               = str2num(get(handles.nodims,'String')); 
    createsta               = str2num(get(handles.nostates,'String')); 
    createnei               = str2num(get(handles.noneighbours,'String')); 
    nngenerations           = str2num(get(handles.nngenerations,'String')); 
    nngenerations           = str2num(get(handles.nngenerations,'String')); 
    nninitlambda            = str2num(get(handles.nninitlambda,'String')); 
    nnpopulation            = str2num(get(handles.nnpopulation,'String')); 
    nnkeepalive             = str2num(get(handles.nnkeepalive,'String')); 
    nnmutate                = str2num(get(handles.nnmutate,'String')); 
    targetonlambda          = (get(handles.targetonlambda,'Value')); 
    targetonpower           = (get(handles.targetonpower,'Value')); 
    targetonbirthrate       = (get(handles.targetonbirthrate,'Value')); 
    targetonpopulation      = (get(handles.targetonpopulation,'Value')); 
    targetonsa              = (get(handles.targetonsa,'Value')); 
    targetlambda            = str2num(get(handles.targetlambda,'String')); 
    targetpower             = str2num(get(handles.targetpower,'String')); 
    targetbirthrate         = str2num(get(handles.targetbirthrate,'String')); 
    targetpopulation        = str2num(get(handles.targetpopulation,'String')); 
    targetsa                = str2num(get(handles.targetsa,'String')); 
    testgridsize            = str2num(get(handles.testgridsize,'String')); 
    testtimesteps           = str2num(get(handles.testtimesteps,'String')); 
    testinitpopulation      = str2num(get(handles.testinitpopulation,'String')); 
                         
    dieifalone              = get(handles.dieifalone,'Value'); 
    symetrical              = get(handles.symetrical,'Value'); 
     
    for popcounter = 1:1:nnpopulation 
        eval(cat(2,'popCA',num2str(popcounter),' = 
classCA(',num2str(createdim),',',num2str(createsta),',',num2str(createnei),');')); 
    end 
     
    % Create CA 
    %----------------- 
    isfound = 0; gencounter = 0; changecount = 0; classcount = 0; 
    bestca = 0; bestscore = -100; 
  
    % Initialise Rulesets 
    %----------------------- 
    for popcounter = 1:1:nnpopulation 
        eval(cat(2,'tmpCA = popCA',num2str(popcounter),';')); 
        tmpCA.rules = zeros(1,tmpCA.norules); 
        if (nninitlambda == 1) 
            tmplambda = rand() * 0.5; 
        else 
            tmplambda = nninitlambda; 
        end 
  
        if (symetrical == 1) 
            nosym = 4; 
            if (tmpCA.nodim == 3) nosym = 7; end 
            for j = 1:1:ceil(((tmpCA.norules*tmplambda)/nosym)) 
                tmprule = ceil(rand() * (tmpCA.norules-1)); 
                while(tmpCA.rules(1,tmprule) ~= 0) tmprule = ceil(rand() * (tmpCA.norules-1)); end 
                tmpCA.rules(1,tmprule) = ceil(rand()*(theCA.nostates-1)); 
                tmpCA.rules(1,tmpCA.staterot(tmprule)) = tmpCA.rules(1,tmprule); 
                tmpCA.rules(1,tmpCA.staterot(tmpCA.staterot(tmprule))) = tmpCA.rules(1,tmprule); 
                tmpCA.rules(1,tmpCA.staterot(tmpCA.staterot(tmpCA.staterot(tmprule)))) = 
tmpCA.rules(1,tmprule); 
                if(tmpCA.nodim == 3) 
                    tmpCA.rules(1,tmpCA.staterotz(tmprule)) = tmpCA.rules(1,tmprule); 
                    tmpCA.rules(1,tmpCA.staterotz(tmpCA.staterotz(tmprule))) = tmpCA.rules(1,tmprule); 
                    tmpCA.rules(1,tmpCA.staterotz(tmpCA.staterotz(tmpCA.staterotz(tmprule)))) = 
tmpCA.rules(1,tmprule); 
                end 
            end 

        else 
            for j = 1:1:ceil(tmpCA.norules*tmplambda) 
                tmprule = ceil(rand() * (tmpCA.norules-1)); 
                while(tmpCA.rules(1,tmprule) ~= 0) tmprule = ceil(rand() * (tmpCA.norules-1)); end 
                tmpCA.rules(1,tmprule) = ceil(rand()*(theCA.nostates-1)); 
            end 
        end 
        if (dieifalone == 1) tmpCA.rules(1,1:tmpCA.nostates) = 0; end 
        tmpCA = classCASetValues(tmpCA); 
        eval(cat(2,'popCA',num2str(popcounter),' = tmpCA;')); 
    end 
     
    if isempty(whichSort) 
        isfound = 1; 
        theCA = popCA1; 
        if ishandle(figMain) catsMain('setupscreen'); end 
    end 
  
    % For Each GENERATION 
    %-------------------- 
    while (isfound == 0) && (gencounter < nngenerations) 
        gencounter = gencounter + 1; 
         
        % Test Rulesets 
        %----------------------- 
        popcounter = 0; classcount = 0; 
        while (isfound == 0) && (popcounter < nnpopulation) 
            set(handles.createmsg,'String',cat(2,'creating - 
',num2str(gencounter,'%3.0f'),':',num2str(nngenerations),' 
',num2str(popcounter,'%3.0f'),':',num2str(nnpopulation))); drawnow; 
            popcounter = popcounter + 1; 
            eval(cat(2,'tmpCA = popCA',num2str(popcounter),';')); 
             
            % Test CA by Running it 
            %----------------------- 
            if probmethod == 0 
                pauseca = 0; 
                if (tmpCA.nodim == 2) 
                    tmpCA.gridsize          = 50; 
                    tmpCA.maxt              = 60; 
                else 
                    tmpCA.gridsize          = 30; 
                    tmpCA.maxt              = 60; 
                end 
                tmpCA.initpopulation    = testinitpopulation; 
  
                stats = classStatsReset(stats); 
                tmpCA = classCAInitCells(tmpCA); 
                tmpCA = classCASetRun(tmpCA); 
                tmpCA = classCARun(tmpCA,1,1); 
                output = [tmpCA.class] 
                tmpCA.score = tmpCA.cscore^2; 
  
                if (tmpCA.class == whichSort) 
                    isfound = 1; classcount = classcount + 1; tmpCA.score = 0; 
                    if (strcmp(whichSort,'Complex')==1) 
                        tmpCA.gridsize          = testgridsize; 
                        tmpCA.maxt              = testtimesteps; 
                        tmpCA.initpopulation    = testinitpopulation; 
  
                        pauseca = 0; 
                        stats = classStatsReset(stats); 
                        tmpCA = classCASetDim(tmpCA); 
                        tmpCA = classCASetRun(tmpCA); 
                        tmpCA = classCARun(tmpCA,1,1); 
                        tmpCA.score = tmpCA.cscore + 1; 
                        if (strcmp(tmpCA.class,'Complex') == 0) isfound = 0;  end 
                    end 
                end 
            end 
             
            if ((targetonlambda == 1) && (abs(tmpCA.lambda-targetlambda)/targetlambda > 0.1)) isfound = 0; 
end 
            if ((targetonsa == 1) && (abs(mean(stats.SA(ceil(tmpCA.maxt/2):1:tmpCA.maxt))-
targetsa)/targetsa > 0.1)) isfound = 0; end 
            if ((targetonbirthrate == 1) && (abs(tmpCA.lambdab-targetbirthrate)/targetbirthrate > 0.1)) isfound 
= 0; end 
            if ((targetonpopulation == 1) && (targetpopulation < 1) && 
(abs(mean(stats.P((ceil(tmpCA.maxt/4)*2):1:(ceil(tmpCA.maxt/4)*3)))-targetpopulation)/targetpopulation > 
0.1)) isfound = 0; end 
            if ((targetonpopulation == 1) && (targetpopulation < 1) && 
(abs(mean(stats.P((ceil(tmpCA.maxt/4)*3):1:(ceil(tmpCA.maxt/4)*4)))-targetpopulation)/targetpopulation > 
0.1)) isfound = 0; end 
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            if ((targetonpopulation == 1) && (targetpopulation == 1) && 
(abs(mean(stats.P((ceil(tmpCA.maxt/4)*2):1:(ceil(tmpCA.maxt/4)*3)))-
mean(stats.P((ceil(tmpCA.maxt/4)*3):1:(ceil(tmpCA.maxt/4)*4)))) > 0.2)) isfound = 0; end 
            if ((targetonpower == 1) && (abs(tmpCA.maxpower-targetpower)/targetpower > 0.1)) isfound = 0; 
end 
             
            if (targetonlambda == 1)        tmpCA.score = tmpCA.score - (abs(tmpCA.lambda-
targetlambda)/targetlambda); end 
            if (targetonsa == 1)            tmpCA.score = tmpCA.score - 
(abs(mean(stats.SA(ceil(tmpCA.maxt/2):1:tmpCA.maxt))-targetsa)/targetsa); end 
            if (targetonbirthrate == 1)     tmpCA.score = tmpCA.score - (abs(tmpCA.lambdab-
targetbirthrate)/targetonbirthrate); end 
            if (targetonpopulation == 1) && (targetpopulation < 1)  tmpCA.score = tmpCA.score - 
(abs(mean(stats.P((ceil(tmpCA.maxt/4)*2):1:(ceil(tmpCA.maxt/4)*3)))-targetpopulation)/targetpopulation); 
end 
            if (targetonpopulation == 1) && (targetpopulation < 1)  tmpCA.score = tmpCA.score - 
(abs(mean(stats.P((ceil(tmpCA.maxt/4)*3):1:(ceil(tmpCA.maxt/4)*4)))-targetpopulation)/targetpopulation); 
end 
            if (targetonpopulation == 1) && (targetpopulation == 1) tmpCA.score = tmpCA.score - 
(abs(mean(stats.P((ceil(tmpCA.maxt/4)*2):1:(ceil(tmpCA.maxt/4)*3)))-
mean(stats.P((ceil(tmpCA.maxt/4)*3):1:(ceil(tmpCA.maxt/4)*4))))); end 
            if (targetonpower == 1)         tmpCA.score = tmpCA.score - (abs(tmpCA.maxpower - 
targetpower)/targetpower); end 
             
            if (tmpCA.score > bestscore) || (isfound == 1) 
                bestscore = tmpCA.score; bestca = popcounter; 
                set(handles.currentmsg,'String',cat(2,'Gen:',num2str(gencounter),', 
Pop:',num2str(popcounter,'%1.0f\n'),... 
                        'Score: ',num2str(bestscore,'%1.2f\n'),... 
                        'CScore: ',num2str(tmpCA.cscore,'%1.2f\n'), ... 
                        'MaxPower: ',num2str(tmpCA.maxpower,'%1.2f\n'),... 
                        'Lamda: ',num2str(tmpCA.lambda,'%1.2f\n'),... 
                        'Lamda B: ',num2str(tmpCA.lambdab,'%1.2f\n'),... 
                        'Class: ',tmpCA.class)); drawnow;   
                theCA = tmpCA; 
                if ishandle(figMain) catsMain('setupscreen'); end 
            end 
            eval(cat(2,'popCA',num2str(popcounter),' = tmpCA;')); 
        end 
        %----------------------- 
        % Genetically Mutate Rulesets 
        %---------------------------- 
        popcounter = 0; changecount = 0;  
        while (isfound == 0) && (popcounter < nnpopulation) 
            popcounter = popcounter + 1; mate = popcounter; 
            while (mate == popcounter) mate = floor(rand()*nnpopulation)+1; end 
            eval(cat(2,'tmpCA = popCA',num2str(popcounter),';')); 
            eval(cat(2,'mateCA = popCA',num2str(mate),';')); 
  
            if ((tmpCA.score < mateCA.score) && (popcounter ~= bestca)) 
                tmpCA.rules = mateCA.rules; 
                changecount = changecount + 1; 
                % --- SYMMETRICAL --- 
                if (symetrical == 1) 
                    nosym = 4; 
                    if (tmpCA.nodim == 3) nosym = 7; end 
                    if (nnmutate >= 1) 
                        noofmutations = nnmutate; 
                    else 
                        muterate = rand * nnmutate; 
                        noofmutations = ceil((tmpCA.norules*muterate)/nosym); 
                    end 
                    for j = 1:1:noofmutations 
                        tmprule = ceil(rand() * (tmpCA.norules-1)); 
                        if (targetonbirthrate == 1) && (abs(targetbirthrate - tmpCA.lambdab) > 0.01) 
                            if (targetbirthrate > tmpCA.lambdab) 
                                while(tmpCA.rules(1,tmprule) == 1) || (rand() < 0.25) tmprule = ceil(rand() * 
(tmpCA.norules-1)); end 
                            else 
                                while(tmpCA.rules(1,tmprule) == 0) || (rand() < 0.25) tmprule = ceil(rand() * 
(tmpCA.norules-1)); end 
                            end 
                        elseif (targetlambda == 1) && (abs(targetlambda - tmpCA.lambda) > 0.01) 
                            if (targetlambda > tmpCA.lambda) 
                                while(tmpCA.rules(1,tmprule) == 1) || (rand() < 0.25) tmprule = ceil(rand() * 
(tmpCA.norules-1)); end 
                            else 
                                while(tmpCA.rules(1,tmprule) == 0) || (rand() < 0.25) tmprule = ceil(rand() * 
(tmpCA.norules-1)); end 
                            end 
                        end 
                        tmpCA.rules(1,tmprule) = abs(1-tmpCA.rules(1,tmprule)); 
                        tmpCA.rules(1,tmpCA.staterot(tmprule)) = tmpCA.rules(tmprule); 
                        tmpCA.rules(1,tmpCA.staterot(tmpCA.staterot(tmprule))) = tmpCA.rules(1,tmprule); 

                        tmpCA.rules(1,tmpCA.staterot(tmpCA.staterot(tmpCA.staterot(tmprule)))) = 
tmpCA.rules(1,tmprule); 
                        if(tmpCA.nodim == 3) 
                            tmpCA.rules(1,tmpCA.staterotz(tmprule)) = tmpCA.rules(tmprule); 
                            tmpCA.rules(1,tmpCA.staterotz(tmpCA.staterotz(tmprule))) = tmpCA.rules(tmprule); 
                            tmpCA.rules(1,tmpCA.staterotz(tmpCA.staterotz(tmpCA.staterotz(tmprule)))) = 
tmpCA.rules(tmprule); 
                        end 
                        tmpCA = classCASetLambda(tmpCA); 
                    end 
                else 
                    % --- NORMAL ---  
                    for j=1:1:tmpCA.norules 
                        if(rand()<nnmutate) tmpCA.rules(1,j) = abs(1-tmpCA.rules(1,j)); end 
                    end 
                end 
                % --- DIE IF ALONE --- 
                if (dieifalone == 1) tmpCA.rules(1,1:tmpCA.nostates) = 0; end 
                tmpCA = classCASetLambda(tmpCA); 
                eval(cat(2,'popCA',num2str(popcounter),' = tmpCA;')); 
            end 
        end 
        %----------------------- 
    end 
             
    if (isfound == 1) 
        set(handles.createmsg,'String','Successful'); drawnow; 
    else 
        set(handles.createmsg,'String','Failed'); drawnow; 
    end 
end 
  
function[y] = bitcount(x,size) 
    y = bitand(x,1)/1 + ... 
        bitand(x,2)/2 + ... 
        bitand(x,4)/4 + ... 
        bitand(x,8)/8 + ... 
        bitand(x,16)/16; 
    if (size == 9) 
        y = y + ... 
            bitand(x,32)/32 + ... 
            bitand(x,64)/64 + ... 
            bitand(x,128)/128 + ... 
            bitand(x,256)/256 + ... 
            bitand(x,512)/512; 
    end 
end 

 

SCREEN – CATSFILE 

function varargout = catsFiles(varargin) 
    gui_Singleton = 1; 
    gui_State = struct('gui_Name',       mfilename, ... 
                       'gui_Singleton',  gui_Singleton, ... 
                       'gui_OpeningFcn', @catsFiles_OpeningFcn, ... 
                       'gui_OutputFcn',  @catsFiles_OutputFcn, ... 
                       'gui_LayoutFcn',  [] , ... 
                       'gui_Callback',   []); 
    if nargin && ischar(varargin{1}) 
        gui_State.gui_Callback = str2func(varargin{1}); 
    end 
  
    if nargout 
        [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
    else 
        gui_mainfcn(gui_State, varargin{:}); 
    end 
end 
  
function catsFiles_OpeningFcn(hObject, eventdata, handles, varargin) 
    handles.output = hObject; 
    guidata(hObject, handles); 
end 
  
function varargout = catsFiles_OutputFcn(hObject, eventdata, handles) 
    varargout{1} = handles.output; 
end 
  
function cmdimportcmp_Callback(hObject, eventdata, handles)    
    global theCA; global fld; global figMain; 
     
    a = actxcontrol('MSComDlg.CommonDialog.1'); 

    a.InitDir = fld; 
    a.Filename = ''; 
    a.Filter = 'csv'; 
    a.ShowOpen; 
    filename = cat(2,regexprep(a.Filename,'.csv',''),'.csv'); 
    release(a); 
     
    fid = fopen(filename,'r'); 
    i = 1; 
    while (feof(fid) == 0) 
        line = fgetl(fid); 
        [a rem] = strtok(line,','); 
        [b rem] = strtok(rem,','); 
        theCA.rules(1,i) =  str2num(a); 
        theCA.rules(1,i+1) = str2num(b); 
        i = i + 2; 
    end 
    fclose(fid); 
    theCA = classCASetValues(theCA); 
    theCA = classCASetRun(theCA); 
    if ishandle(figMain) catsMain('setupscreen'); end 
end 
  
function loadrowno_CreateFcn(hObject, eventdata, handles) 
    if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
        set(hObject,'BackgroundColor','white'); 
    end 
end 
  
function cmdsavecmp_Callback(hObject, eventdata, handles)     
    global theCA; global fld; 
     
    a = actxcontrol('MSComDlg.CommonDialog.1'); 
    a.InitDir = fld; 
    a.Filename = ''; 
    a.Filter = 'csv'; 
    a.ShowSave; 
    filename = cat(2,regexprep(a.Filename,'.csv',''),'.csv'); 
    release(a); 
     
    fid = fopen(filename,'w'); 
    for i = 1:2:size(theCA.rules,2) 
        fprintf(fid,'%1d,',theCA.rules(1,i)); 
        fprintf(fid,'%1d\n',theCA.rules(1,i+1)); 
    end 
    fclose(fid); 
end 

 

CLASS CA 

function[theCA] = classCA(nodim, nostates, noneighbours) 
    if exist('nodim') 
        theCA.nodim                 = nodim; 
        theCA.nostates              = nostates; 
        theCA.noneighbours          = noneighbours; 
    else 
        theCA.nodim                 = 2; 
        theCA.nostates              = 2; 
        theCA.noneighbours          = 9; 
    end 
    theCA.norules               = theCA.nostates ^ theCA.noneighbours; 
    theCA.symettrical           = 1; 
    theCA.dieifalone            = 1; 
    theCA.rules                 = 1; 
    theCA.cells                 = []; 
    theCA.gridsize              = 50; 
    theCA.griddim               = []; 
    theCA.gridsplit             = 5; 
    theCA.nocells               = 0; 
    theCA.maxt                  = 100; 
    theCA.initpopulation        = 0.25; 
    theCA.drawspeed             = 1; 
     
    theCA.lambda                = 0;            % Lambda 
    theCA.lambdab               = 0;            % Lambda Birth 
    theCA.lambdad               = 0;            % Lambda Death 
     
    theCA.name                  = 'Unnamed'; 
    theCA.filename              = ''; 
    theCA.class                 = 'Unknown'; 
    theCA.score                 = 0; 
    theCA.cscore                = 0; 
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    theCA.ccount                = 0; 
    theCA.slope                 = 0; 
    theCA.maxpower              = 0; 
    theCA.staterot              = []; 
    theCA.staterotz             = []; 
    if (theCA.noneighbours == 9) 
        theCA.symcells = [1 3 7 11  15  31  33  35  37  39  41  43  45  47  49  51  53  55  57  59  61  63  97  
99  101 103 105 107 109 111 113 115 117 119 121 123 125 127 161 163 165 167 169 171 173 175 177 
179 181 183 185 187 189 191 225 227 229 231 233 235 237 239 241 243 245 247 249 251 253 255 481 
483 487 491 495 511];  
    else 
        theCA.symcells = [1 3 7 15 31];  
    end 
     
    theCA = classCASetDim(theCA); 
    theCA = classCASetRot(theCA); 
    theCA = classCASetRun(theCA); 
end 

 

CLASS CA – RUN 

function[theCA] = catsRunCA(theCA,forcenodraw,forcecalc) 
    global figRun; global figAnalyse; global pauseca; global stats; global notes; 
     
    warning off all 
     
    if (theCA.nodim == 3) 
        splitsize = theCA.gridsize; 
        x               = 1:splitsize; 
        xplus           = [2:splitsize 1]; 
        xplus2          = [3:splitsize 1 2]; 
        xminus          = [splitsize 1:splitsize-1]; 
        xminus2         = [splitsize-1 splitsize 1:splitsize-2]; 
        y = x;  yplus = xplus;  yplus2 = xplus2; yminus = xminus; yminus2 = xminus2; 
        z = x;  zplus = xplus;  zplus2 = xplus2; zminus = xminus; zminus2 = xminus2; 
    else 
        splitsize = theCA.gridsize; 
        x               = 1:splitsize; 
        xplus           = [2:splitsize 1]; 
        xplus2          = [3:splitsize 1 2]; 
        xminus          = [splitsize 1:splitsize-1]; 
        xminus2         = [splitsize-1 splitsize 1:splitsize-2]; 
        y = x;  yplus = xplus;  yplus2 = xplus2; yminus = xminus; yminus2 = xminus2; 
        z = x;  zplus = xplus;  zplus2 = xplus2; zminus = xminus; zminus2 = xminus2; 
    end 
    cellages        = theCA.cells; 
    ages            = 0; 
    nolives         = 0; 
    tmp3            = 0; 
    localsize = 40; 
     
    drawRun         = ishandle(figRun); 
    drawAnalyse     = ishandle(figAnalyse); 
    calcit          = drawAnalyse; 
    if (forcenodraw > 0) drawRun = 0; drawAnalyse = 0; end 
    if (forcecalc > 0) calcit = forcecalc; end 
     
    if (drawRun == 1) 
        drawhandles = guihandles(figRun); axes(get(figRun,'CurrentAxes')); 
        if (theCA.nodim == 2)  
            imgr            = reshape(stats.colmap(theCA.cells+1,1),theCA.griddim); 
            imgg            = reshape(stats.colmap(theCA.cells+1,2),theCA.griddim); 
            imgb            = reshape(stats.colmap(theCA.cells+1,3),theCA.griddim); 
            IMH = image(cat(3,imgr,imgg,imgb)); 
        elseif (theCA.nodim == 3) 
            runaxes = get(figRun,'CurrentAxes'); cla(runaxes); 
            axis(runaxes, [0 theCA.gridsize+1 0 theCA.gridsize+1 0 theCA.gridsize+1]); 
            colour = summer(theCA.gridsize); 
            FVb.vertices = []; FVb.faces = []; 
            %cubeface = [1 2 3 4; 4 3 7 8; 1 5 8 4; 2 6 7 3; 1 2 6 5; 5 6 7 8]; 
            cubeface = [1 2 3 4; 4 3 7 8; 1 5 8 4; 2 6 7 3; 1 2 6 5; 5 6 7 8]; 
            for ypos = 1:theCA.gridsize 
                for xpos = 1:theCA.gridsize 
                    xs=[xpos,xpos+1]; 
                    ys=[ypos,ypos+1]; 
                    FVb.vertices=[FVb.vertices; [xs([1 2 2 1 1 2 2 1]) ; ys([1 1 2 2 1 1 2 2]) ; [1 1 1 1 2 2 2 2]]']; 
                end 
            end 
             
            pah = []; 
            for zpos = 1:theCA.gridsize 
                FV(zpos).vertices = FVb.vertices; 

                FV(zpos).vertices(:,3) = FV(zpos).vertices(:,3) + (zpos-1); 
                FV(zpos).facecolor = colour(zpos,:); 
                pah(zpos) = patch(FV(zpos)); 
            end 
        end 
    end 
    if (drawAnalyse == 1) calchandles = guihandles(figAnalyse); calcaxes = get(figAnalyse,'CurrentAxes'); end 
    if (calcit == 1) 
        theCA.class = 'Unknown';  
    end 
     
    %------- 
    % RUN CA 
    %------- 
    i = theCA.currenttimestep; 
    while i <= theCA.maxt 
        if (ishandle(figAnalyse) == 0) drawAnalyse = 0; end 
        if(pauseca == 1) 
            theCA.currenttimestep = i; 
            i = theCA.maxt+1; 
        else 
            if (calcit > 0) fullstates = ones(theCA.griddim); end 
             
            % CALCULATE NEXT CELLS 
            %--------------------- 
            oldcells = theCA.cells; 
            if (theCA.noneighbours == 9) 
               states(x,y)   = 1 + ... 
                              ((theCA.nostates^0) * theCA.cells(x,y)) + ... 
                              ((theCA.nostates^1) * theCA.cells(xplus,y)) + ... 
                              ((theCA.nostates^2) * theCA.cells(x,yplus)) + ... 
                              ((theCA.nostates^3) * theCA.cells(xminus,y)) + ... 
                              ((theCA.nostates^4) * theCA.cells(x,yminus)) + ... 
                              ((theCA.nostates^5) * theCA.cells(xplus,yminus)) + ... 
                              ((theCA.nostates^6) * theCA.cells(xplus,yplus)) + ... 
                              ((theCA.nostates^7) * theCA.cells(xminus,yplus)) + ... 
                              ((theCA.nostates^8) * theCA.cells(xminus,yminus)); 
  
                theCA.cells(x,y)  = theCA.rules(states(x,y)); 
                if (calcit > 0) fullstates(x,y) = states(x,y); end 
            elseif (theCA.noneighbours == 5) 
               states(x,y)   = 1 + ... 
                              ((theCA.nostates^0) * theCA.cells(x,y)) + ... 
                              ((theCA.nostates^1) * theCA.cells(xplus,y)) + ... 
                              ((theCA.nostates^2) * theCA.cells(x,yplus)) + ... 
                              ((theCA.nostates^3) * theCA.cells(xminus,y)) + ... 
                              ((theCA.nostates^4) * theCA.cells(x,yminus)); 
  
                theCA.cells(x,y)  = theCA.rules(states(x,y)); 
                if (calcit > 0) fullstates(x,y) = states(x,y); end 
            elseif (theCA.noneighbours == 7) 
                if (i > 1) 
                    states(x,y,z)   = 1 + ... 
                                  ((theCA.nostates^0) * theCA.cells(x,y,z)) + ... 
                                  ((theCA.nostates^1) * theCA.cells(xplus,y,z)) + ... 
                                  ((theCA.nostates^2) * theCA.cells(x,yplus,z)) + ... 
                                  ((theCA.nostates^3) * theCA.cells(xminus,y,z)) + ... 
                                  ((theCA.nostates^4) * theCA.cells(x,yminus,z)) + ... 
                                  ((theCA.nostates^5) * theCA.cells(x,y,zminus)) + ... 
                                  ((theCA.nostates^6) * theCA.cells(x,y,zplus)); 
  
                    theCA.cells(x,y,z)  = theCA.rules(states(x,y,z)); 
                    if (calcit > 0) fullstates(x,y,z) = states(x,y,z); end 
                end 
            end 
             
            % CALCULATE STATS 
            %---------------- 
            stats.A(i) = sum(sum(sum(theCA.cells~=0))); 
            if (calcit > 0) 
                stats.P(i) = stats.A(i) / theCA.nocells; 
                if (calcit == 1) 
                    stats.D(i)  = theCA.nocells - stats.A(i); 
                    stats.B(i)  = sum(sum(sum(oldcells==0 & theCA.cells~=0))); 
                    stats.C(i)  = sum(sum(sum(oldcells~=0 & theCA.cells==0))); 
                    stats.BA(i) = stats.B(i) / stats.A(i); 
                    if (i > 1) stats.BD(i) = stats.B(i) / stats.D(i-1); else stats.BD(i) = 0; end 
                    if (i > 1) stats.CA(i) = stats.C(i) / stats.A(i-1); else stats.CA(i) = 0; end 
                    %stats.BD(i) = stats.B(i) / stats.D(i); 
                    %stats.CD(i) = stats.C(i) / stats.D(i); 
                    stats.BD(i) = stats.B(i) / theCA.nocells; 
                    stats.CD(i) = stats.C(i) / theCA.nocells; 
                    stats.SA(i) = sum(sum(sum(oldcells~=0 & theCA.cells~=0))) / stats.A(i); 
                    stats.SD(i) = sum(sum(sum(oldcells==0 & theCA.cells==0))) / stats.D(i); 
                     

                    % CALCULATE ENTROPY 
                    S = 0; 
                    if (stats.showE == 1) 
                        Qn = sum(hist(fullstates,theCA.norules)') / theCA.nocells; 
                        tQn = Qn.*log(Qn); 
                        tQn(isnan(tQn)) = 0; 
                        S = 0 - sum(tQn); 
                    end 
                    stats.E(i)   = S; 
  
                    % CALCULATE FULL SLOPE 
                    Y1 = []; Y = []; N = 0; N1 = 0; slope = 0; ydata = 0; xdata = 0; y1data = 0; x1data = 0; 
d1data = 0; theCA.slope = 0; 
                    if (i > 1) 
                        Y = fft(stats.P(1:1:i),i); N = length(Y); Y(1) = []; nyquist = 1/2; 
                        ampl = abs(Y(1:N/2)); 
                        power = ampl.^2; 
                        freq = (1:N/2)/(N/2)*nyquist; 
                        period = 1 ./ freq; 
                        theCA.maxpower = max(power); 
                        freq1 = freq; ampl1 = ampl; power1 = power;  period1 = period;  
                    end 
                end 
                     
                % CALCULATE CLASS 
                if (i > localsize) 
                    % CALCULATE LOCAL SLOPE 
                    Y1 = fft(stats.P((i-localsize):1:i)); N1 = length(Y1); Y1(1) = []; nyquist1 = 1/2; 
                    ampl1 = abs(Y1(1:N1/2)); 
                    power1 = ampl1.^2; 
                    freq1 = (1:N1/2)/(N1/2)*nyquist1; 
                    period1 = 1 ./ freq1; 
                    p = polyfit(period1,power1,1); d1data = polyval(p,period1); 
                    theCA.slope = ((d1data(1) - d1data(2))/(period1(1) - period1(2)))*1000; 
                     
                    if (theCA.nodim == 2) isOrder = (stats.A(i) / theCA.nocells) < (theCA.lambda / 2); end 
                    if (theCA.nodim == 3) isOrder = ((stats.A(i)) / theCA.nocells) < (theCA.lambda / 2); end 
                    isChaos = (sum(d1data) > 0.0001); 
                    if (isChaos == 1) theCA.class = 'Chaotic'; end 
                    if (isOrder == 1) theCA.class = 'Ordered'; end 
                    %if (isOrder == 1) && (isChaos == 1) theCA.class = 'Complex'; theCA.ccount = theCA.ccount 
+ 1; end 
                    if (isOrder == 1) && (isChaos == 1) && (theCA.slope > 0.01) theCA.class = 'Complex'; 
theCA.cscore = i / theCA.maxt; end 
                    %theCA.cscore = theCA.ccount / (i-localsize); 
                end 
            end 
             
            % DRAW STATS 
            %----------- 
            if (drawAnalyse > 0) 
                if (theCA.drawspeed <= 1) || (mod(i,theCA.drawspeed) == 0) 
                      
                    set(calchandles.txtclass,'String',cat(2,num2str(theCA.cscore,'%1.3f\n'),theCA.class)); 
                     
                    % DRAW FREQ GRAPHS 
                    %---------------- 
 
                    if (stats.showFreq == 1) 
                        cla(calcaxes); set(calcaxes,'NextPlot','add'); 
                        if (i > 5) 
                            if (stats.showXFreq == 1) xlabel(calcaxes,'Frequency'); xdata = freq; x1data = freq1; end 
                            if (stats.showXLogFreq == 1) xlabel(calcaxes,'Log(Frequency)'); xdata = log(freq); 
x1data = log(freq1); end 
                            if (stats.showXPeriod == 1) xlabel(calcaxes,'Period (1/Frequency)'); xdata = period; 
x1data = period1; end 
                            if (stats.showYAmp == 1) ylabel(calcaxes,'Amplitude'); ydata = ampl; y1data = ampl1; 
end 
                            if (stats.showYPower == 1) ylabel(calcaxes,'Power'); ydata = power; y1data = power1; 
end 
                            if (stats.showYLogPower == 1) ylabel(calcaxes,'Log(Power)'); ydata = log(power); y1data 
= log(power1); end 
                            p = polyfit(xdata,ydata,1); ddata = polyval(p,xdata); 
                            p = polyfit(x1data,y1data,1); d1data = polyval(p,x1data); 
                             
                            minx = 0; maxx = 0; miny = 0; maxy = 0; 
                            if (stats.showFull == 1) minx = min(xdata); maxx = max(xdata); miny = min(ydata); 
maxy = max(ydata); end; 
                            if (stats.showRecent == 1) && (min(x1data) < minx) minx = min(x1data); end 
                            if (stats.showRecent == 1) &&(max(x1data) > maxx) maxx = max(x1data); end 
                            if (stats.showRecent == 1) &&(min(y1data) < miny) miny = min(y1data); end 
                            if (stats.showRecent == 1) &&(max(y1data) > maxy) maxy = max(y1data); end 
                            if (stats.showXLogFreq == 1) && (stats.showYLogPower == 1) minx = -7.5; maxx = 2.5; 
miny = -25; maxy = 5; end 
                            if (stats.showXLogFreq == 1) && (stats.showYPower == 1) miny = 0; maxy = 0.1; end 



© Stephen James 

 

Page 51 of 52 

                            if (stats.showXPeriod == 1) && (stats.showYAmp == 1) minx = 0; miny = 0; maxy = 
ceil(i/50); end 
                            if (stats.showXPeriod == 1) && (stats.showYAmp == 1) && (stats.showFull == 0) maxy = 
0.1; end 
                            if (stats.showXPeriod == 1) && (stats.showYPower == 1) minx = 0; miny = 0; maxy = 
ceil(i/10); end 
                            if (stats.showXPeriod == 1) && (stats.showYPower == 1) && (stats.showFull == 0) maxy 
= 0.01; end 
                            if (stats.showXFreq == 1) minx = 0; maxx = 0.5; miny = 0; maxy = 1; end 
                            if (stats.showXFreq == 1) && (stats.showFull == 0) maxy = 0.1; end 
                             
                            if (stats.showYLogPower == 1) plot(calcaxes,[minx-5 maxx+1],[maxx+1 minx-5],'b--'); 
end; 
                            if (stats.showYLogPower == 1) plot(calcaxes,[minx+1 maxx+1],[maxx+1+((maxx-
minx)/2) minx+1],'b--'); end; 
                            if (stats.showFull == 1) plot(calcaxes,xdata,ydata,'g-','LineWidth',2); 
plot(calcaxes,xdata,ddata,'r-','LineWidth',2); end 
                            if (stats.showRecent == 1) plot(calcaxes,x1data,y1data,'c-','LineWidth',2); 
plot(calcaxes,x1data,d1data,'m-','LineWidth',2); end 
                            axis(calcaxes,'normal'); axis(calcaxes,[minx maxx miny maxy]); 
                        end 
                         
                    % DRAW PARTS TIME DIAGRAM 
                    elseif (stats.showParts == 1) 
                        xlabel(calcaxes,'Part'); ylabel(calcaxes,'Time'); 
                        cla(calcaxes); set(calcaxes,'NextPlot','replace'); 
                        if (i == 1) 
                            axis(calcaxes,'normal'); axis(calcaxes,[1 theCA.nocells 0 theCA.maxt]); 
                            prtsmap     = ones(theCA.maxt,theCA.nocells); 
                            axes(calcaxes); 
                            PRTS = image(cat(3,prtsmap,prtsmap,prtsmap)); 
                            drawnow; 
                        end 
                        for j = 0:1:theCA.gridsize-1 
                            for k = 1:1:theCA.gridsize 
                                prtsmap(i,(j*theCA.gridsize)+k) = 1-theCA.cells(j+1,k); 
                            end 
                        end 
                        set(PRTS,'CData',cat(3,prtsmap,prtsmap,prtsmap)); 
                     
                    % DRAW RATES STATISTICS 
                    elseif (stats.showRates == 1) 
                        set(calchandles.txtba,'String',num2str(stats.BA(i),'%1.3f')); 
                        set(calchandles.txtbd,'String',num2str(stats.BD(i),'%1.3f')); 
                        set(calchandles.txtca,'String',num2str(stats.CA(i),'%1.3f')); 
                        set(calchandles.txtcd,'String',num2str(stats.CD(i),'%1.3f')); 
                        set(calchandles.txtsa,'String',num2str(stats.SA(i),'%1.3f')); 
                        set(calchandles.txtsd,'String',num2str(stats.SD(i),'%1.3f')); 
                        set(calchandles.txtp,'String',num2str(stats.P(i),'%1.3f')); 
                        set(calchandles.txte,'String',num2str(stats.E(i),'%1.3f')); 
                         
                        cla(calcaxes); set(calcaxes,'NextPlot','add'); 
                        if (stats.showSpringy == 1) axis(calcaxes,'normal'); axis(calcaxes,[0 i 0 1]); end 
                        if (stats.showSpringy == 0) axis(calcaxes,'normal'); axis(calcaxes,[0 theCA.maxt 0 1]); end 
                        xlabel(calcaxes,'Time'); 
                        % PERCENTAGES 
                        if (stats.showMinMax == 0) 
                            ylabel(calcaxes,'Rate'); 
                            showbit = 1:1:i; 
                            if (stats.showL == 1) plot(calcaxes,showbit,ones(size(showbit))*theCA.lambda,'k-
','LineWidth',2); end 
                            if (stats.showLB == 1) plot(calcaxes,showbit,ones(size(showbit))*theCA.lambdab,'r-
','LineWidth',2); end 
                            if (stats.showLD == 1) plot(calcaxes,showbit,ones(size(showbit))*theCA.lambdad,'b-
','LineWidth',2); end 
                            if (stats.showLSA == 1) plot(calcaxes,showbit,ones(size(showbit))*(1-theCA.lambdad),'y-
-','LineWidth',2); end 
                            if (stats.showLSD == 1) plot(calcaxes,showbit,ones(size(showbit))*(1-theCA.lambdab),'y-
-','LineWidth',2); end 
                             
                            if (stats.showBA == 1) plot(calcaxes,showbit,stats.BA(showbit),'m-','LineWidth',3); end 
                            if (stats.showBD == 1) plot(calcaxes,showbit,stats.BD(showbit),'r-','LineWidth',3); end 
                            if (stats.showCA == 1) plot(calcaxes,showbit,stats.CA(showbit),'c-','LineWidth',3); end 
                            if (stats.showCD == 1) plot(calcaxes,showbit,stats.CD(showbit),'b-','LineWidth',3); end 
                            if (stats.showSA == 1) plot(calcaxes,showbit,stats.SA(showbit),'r-','LineWidth',3); end 
                            if (stats.showSD == 1) plot(calcaxes,showbit,stats.SD(showbit),'y-','LineWidth',3); end 
                            if (stats.showE == 1) plot(calcaxes,showbit,stats.E(showbit),'k-','LineWidth',3); end 
                            if (stats.showP == 1) plot(calcaxes,showbit,stats.P(showbit),'g-','LineWidth',3); end 
                        % MIN MAX 
                        else 
                            ylabel(calcaxes,'Rate (min max)'); 
                            if (i>stats.statsstart) 
                                showbit = stats.statsstart+1:1:i; 
                                if (stats.showBA == 1) plot(calcaxes,showbit,minmax(stats.BA(showbit)),'m-
','LineWidth',2); end 

                                if (stats.showBD == 1) plot(calcaxes,showbit,minmax(stats.BD(showbit)),'r-
','LineWidth',2); end 
                                if (stats.showCA == 1) plot(calcaxes,showbit,minmax(stats.CA(showbit)),'c-
','LineWidth',2); end 
                                if (stats.showCD == 1) plot(calcaxes,showbit,minmax(stats.CD(showbit)),'b-
','LineWidth',2); end 
                                if (stats.showSA == 1) plot(calcaxes,showbit,minmax(stats.SA(showbit)),'r-
','LineWidth',2); end 
                                if (stats.showSD == 1) plot(calcaxes,showbit,minmax(stats.SD(showbit)),'y-
','LineWidth',2); end 
                                if (stats.showE == 1) plot(calcaxes,showbit,minmax(stats.E(showbit)),'k-
','LineWidth',2); end 
                                if (stats.showP == 1) plot(calcaxes,showbit,minmax(stats.P(showbit)),'g-
','LineWidth',2); end 
                            end 
                        end 
                    end 
                end 
            end 
             
            % DRAW CA 
            %----------- 
            if(drawRun > 0) 
                    if (theCA.drawspeed <= 1) || (mod(i,theCA.drawspeed) == 0) 
                        if (theCA.nodim == 2) 
                            imgr        = reshape(stats.colmap(theCA.cells+1,2),theCA.griddim); 
                            imgg        = reshape(stats.colmap(theCA.cells+1,2),theCA.griddim); 
                            imgb        = reshape(stats.colmap(theCA.cells+1,2),theCA.griddim); 
  
                            set(IMH,'CData',cat(3,imgr,imgg,imgb)); 
                        elseif(theCA.nodim == 3) 
                            view(runaxes,[30+(i/4) 10+(i/2)]); 
                            for zpos = 1:theCA.gridsize 
                                showfaces = []; showcells = []; b = []; ix = []; 
                                [b ix] = sort(reshape(theCA.cells(:,:,zpos),1,theCA.gridsize*theCA.gridsize)); 
                                showcells = (b.*ix); 
                                showcells(showcells == 0) = []; 
                                showfaces = 
(repmat(sort(repmat(showcells,1,size(cubeface,1)),'descend')',1,size(cubeface,2))*8)-8 + 
repmat(cubeface,size(showcells,2),1); 
                                set(pah(zpos),'Faces',showfaces); 
                            end 
                        end 
                        set(drawhandles.currenttimestep,'String',num2str(i)); 
                        set(drawhandles.currentpopulation,'String',num2str(stats.A(i) / theCA.nocells,'%2.4f')); 
                        drawnow; 
                    end 
                    if (theCA.drawspeed <  1) pause(theCA.drawspeed); end 
            end 
            i = i + 1; 
        end 
    end 
    if (pauseca == 0) theCA.currenttimestep = theCA.maxt; end 
end 
  
function[y] = minmax(x) 
    y = (x - min(x)) .* 1/(max(x)-min(x)); 
end 

 

CLASS CA – INIT CELLS 

function[theCA] = classCAInitCells(theCA) 
    theCA.cells = zeros(theCA.griddim); 
    if (theCA.initpopulation < 1) 
        theCA.cells       = ceil(rand(theCA.griddim) * (theCA.nostates-1)); 
        theCA.cells       = theCA.cells .* (rand(theCA.griddim)<theCA.initpopulation); 
    else 
        theCA.cells = zeros(theCA.griddim); 
        mid = 0 + ceil(theCA.gridsize/2); 
        x = 0 + ceil(theCA.gridsize/2); 
        if (theCA.nodim == 3) 
            theCA.cells(mid,mid,mid) = 1; 
            theCA.cells(mid+1,mid,mid) = 1; 
        else 
            theCA.cells(mid,mid) = 1; 
            theCA.cells(mid+1,mid) = 1; 
        end 
    end 
end 
 

 

CLASS CA – SET VALUES 

function[theCA] = classCASetValues(theCA) 
    theCA.norules = size(theCA.rules,2); 
     
    if (theCA.norules == 2^9 ) theCA.nodim = 2; theCA.noneighbours = 9; theCA.nostates = 2; end 
    if (theCA.norules == 3^9 ) theCA.nodim = 2; theCA.noneighbours = 9; theCA.nostates = 3; end 
    if (theCA.norules == 4^9 ) theCA.nodim = 2; theCA.noneighbours = 9; theCA.nostates = 4; end 
    if (theCA.norules == 5^9 ) theCA.nodim = 2; theCA.noneighbours = 9; theCA.nostates = 5; end 
    if (theCA.norules == 2^7 ) theCA.nodim = 3; theCA.noneighbours = 7; theCA.nostates = 2; end 
    if (theCA.norules == 2^27 ) theCA.nodim = 3; theCA.noneighbours = 27; theCA.nostates = 2; end 
    if (theCA.norules == 2^16 ) theCA.nodim = 2; theCA.noneighbours = 16; theCA.nostates = 2; end 
     
    theCA.dieifalone = 0; if (theCA.rules(1,1) == 0) theCA.dieifalone = 1; end 
     
    theCA.staterot              = []; 
     
    theCA = classCASetLambda(theCA); 
    theCA = classCASetDim(theCA); 
    theCA = classCASetRot(theCA);  
end 

 

CLASS CA – SET DIM 

function[theCA] = classCASetDim(theCA) 
    if (theCA.nodim == 1) theCA.griddim = [1]; end 
    if (theCA.nodim == 2) theCA.griddim = [theCA.gridsize, theCA.gridsize]; end 
    if (theCA.nodim == 3) theCA.griddim = [theCA.gridsize, theCA.gridsize, theCA.gridsize]; end 
     
    theCA.nocells = prod(theCA.griddim); 
end 

 

CLASS CA – SET LAMBDA 

function[theCA] = classCASetLambda(theCA) 
    theCA.lambda          = sum(sum(theCA.rules>0))/theCA.norules; 
    theCA.lambdab         = 0; 
    theCA.lambdad         = 0; 
    for i = 1:2:(theCA.norules-1) 
        theCA.lambdab = theCA.lambdab + theCA.rules(1,i); 
        theCA.lambdad = theCA.lambdad + (1-theCA.rules(1,i+1)); 
    end 
    theCA.lambdab = theCA.lambdab / (theCA.norules/2); 
    theCA.lambdad = theCA.lambdad / (theCA.norules/2);     
end 

 

CLASS CA – SET RUN 

function[theCA] = classCASetRun(theCA) 
    theCA = classCAInitCells(theCA); 
     
    theCA.currenttimestep       = 1; 
    theCA.currentalives         = sum(sum(theCA.cells>0)); 
    theCA.currentsas            = 0; 
    theCA.currentbirths         = 0; 
    theCA.currentdeaths         = 0; 
    theCA.currentdeathage       = 0; 
    theCA.currententropy        = 0; 
    theCA.score                 = 0; 
    theCA.cscore                = 0; 
    theCA.ccount                = 0; 
    theCA.slope                 = 0; 
    theCA.maxpower              = 0; 
    theCA.class                 = 'Unknown'; 
end 

 

CLASS CA – SET ROT 

function[theCA] = classCASetRot(theCA) 
    global fld; 
     
    theCA.staterot        = []; 
    theCA.staterotz       = []; 
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    for i = 1:1:ceil(theCA.norules/10000) 
        minrot = (10000*(i-1))+1; 
        if theCA.norules < (i*10000) 
            maxrot = theCA.norules; 
        else 
            maxrot = i*10000; 
        end 
        if exist(cat(2,fld,'\System Files\','statrot-',num2str(theCA.nostates),'-',num2str(theCA.noneighbours),'-
',num2str(i),'.mat')) 
            load(cat(2,fld,'\System Files\','statrot-',num2str(theCA.nostates),'-',num2str(theCA.noneighbours),'-
',num2str(i),'.mat')); 
            theCA.staterot(1,minrot:1:maxrot) = staterottmp; 
        else 
            staterottmp = []; 
            for j = minrot:1:maxrot 
                k = staterotate(j, theCA.nostates, theCA.nodim, theCA.noneighbours); 
                staterottmp(j-minrot+1) = k; 
                output = j 
            end 
            save(cat(2,fld,'\System Files\','statrot-',num2str(theCA.nostates),'-',num2str(theCA.noneighbours),'-
',num2str(i),'.mat'),'staterottmp'); 
        end 
    end 
     
    for i = 1:1:ceil(theCA.norules/10000) 
        minrot = (10000*(i-1))+1; 
        if theCA.norules < (i*10000) 
            maxrot = theCA.norules; 
        else 
            maxrot = i*10000; 
        end 
        if exist(cat(2,fld,'\System Files\','statrotz-',num2str(theCA.nostates),'-',num2str(theCA.noneighbours),'-
',num2str(i),'.mat')) 
            load(cat(2,fld,'\System Files\','statrotz-',num2str(theCA.nostates),'-',num2str(theCA.noneighbours),'-
',num2str(i),'.mat')); 
            theCA.staterotz(1,minrot:1:maxrot) = staterottmp; 
        else 
            staterottmp = []; 
            for j = minrot:1:maxrot 
                k = staterotatez(j, theCA.nostates, theCA.nodim, theCA.noneighbours); 
                staterottmp(j-minrot+1) = k; 
                output = j 
            end 
            save(cat(2,fld,'\System Files\','statrotz-',num2str(theCA.nostates),'-
',num2str(theCA.noneighbours),'-',num2str(i),'.mat'),'staterottmp'); 
        end 
    end 
end 
  
function[y] = staterotate(x, nostates, nodim, noneighbours) 
     
    states = zeros(1,noneighbours); 
    x1     = x-1; 
    for i = noneighbours-1:-1:0 
        for j = nostates-1:-1:1 
            if (x1 >= (nostates^i)*j) states(1,i+1) = j; x1 = x1 - ((nostates^i)*j); end 
        end 
    end 
     
    if (noneighbours == 3) 
        y = (states(1,1) * (nostates^0)) + ... 
            (states(1,3) * (nostates^1)) + ... 
            (states(1,2) * (nostates^2)); 
    elseif (noneighbours == 5) 
        y = (states(1,1) * (nostates^0)) + ... 
            (states(1,2) * (nostates^2)) + ... 
            (states(1,3) * (nostates^3)) + ... 
            (states(1,4) * (nostates^4)) + ... 
            (states(1,5) * (nostates^1)); 
    elseif (noneighbours == 9) 
        y = (states(1,1) * (nostates^0)) + ... 
            (states(1,2) * (nostates^2)) + ... 
            (states(1,3) * (nostates^3)) + ... 
            (states(1,4) * (nostates^4)) + ... 
            (states(1,5) * (nostates^1)) + ... 
            (states(1,6) * (nostates^6)) + ... 
            (states(1,7) * (nostates^7)) + ... 
            (states(1,8) * (nostates^8)) + ... 
            (states(1,9) * (nostates^5)); 
    elseif (noneighbours == 7) 
        y = (states(1,1) * (nostates^0)) + ... 
            (states(1,2) * (nostates^2)) + ... 
            (states(1,3) * (nostates^3)) + ... 
            (states(1,4) * (nostates^4)) + ... 
            (states(1,5) * (nostates^1)) + ... 

            (states(1,6) * (nostates^5)) + ... 
            (states(1,7) * (nostates^6)); 
    end 
    y = y + 1; 
end 
  
function[y] = staterotatez(x, nostates, nodim, noneighbours) 
     
    states = zeros(1,noneighbours); 
    x1     = x-1; 
    for i = noneighbours-1:-1:0 
        for j = nostates-1:-1:1 
            if (x1 >= (nostates^i)*j) states(1,i+1) = j; x1 = x1 - ((nostates^i)*j); end 
        end 
    end 
    y = x1; 
    if (noneighbours == 7) 
        y = (states(1,1) * (nostates^0)) + ... 
            (states(1,2) * (nostates^6)) + ... 
            (states(1,3) * (nostates^2)) + ... 
            (states(1,4) * (nostates^5)) + ... 
            (states(1,5) * (nostates^4)) + ... 
            (states(1,6) * (nostates^1)) + ... 
            (states(1,7) * (nostates^3)); 
    end 
    y = y + 1; 
end 

 

CLASS CA - LOAD 

function theCA = classCALoad(theCA, filename) 
    theCA.filename  = filename; 
     
    load(theCA.filename); 
    theCA.rules     = bestrules; 
     
    theCA           = classCASetValues(theCA); 
    theCA           = classCASetRun(theCA); 
end 

 

CLASS CA - SAVE 

function[theCA] = classCASave(theCA, filename) 
    bestrules = theCA.rules; 
    theCA.filename = cat(2,regexprep(filename,'.mat',''),'.mat'); 
    save(theCA.filename,'bestrules'); 
end 

 

CLASS STATS - MAIN 

function[stats] = classStats() 
    stats.showRates       = 1; 
    stats.showFreq        = 0; 
    stats.showParts       = 0; 
     
    stats.A               = []; 
    stats.D               = []; 
    stats.B               = []; 
    stats.C               = []; 
     
    stats.P               = []; 
    stats.BA              = []; 
    stats.BD              = []; 
    stats.CA              = []; 
    stats.CD              = []; 
    stats.SA              = []; 
    stats.SD              = []; 
    stats.E               = []; 
    stats.F               = []; 
     
    stats.showL           = 1; 
    stats.showLB          = 1; 
    stats.showLD          = 0; 
    stats.showLSA         = 1; 
    stats.showLSD         = 0; 
     
    stats.showP           = 1; 

    stats.showBA          = 0; 
    stats.showBD          = 1; 
    stats.showCA          = 0; 
    stats.showCD          = 1; 
    stats.showSA          = 1; 
    stats.showSD          = 0; 
    stats.showE           = 0; 
     
    stats.showMinMax      = 0; 
    stats.showSpringy     = 1; 
     
    stats.showFull        = 1; 
    stats.showRecent      = 1; 
    stats.showXFreq       = 1; 
    stats.showXLogFreq    = 0; 
    stats.showXPeriod     = 0; 
    stats.showYAmp        = 1; 
    stats.showYPower      = 0; 
    stats.showYLogPower   = 0; 
     
    stats.statsstart      = 10; 
     
    stats.colmap          = [0.0 0.0 0.0;... 
                       0.0 1.0 0.0;... 
                       1.0 1.0 0.0;... 
                       1.0 0.0 1.0;... 
                       0.0 1.0 1.0;... 
                       0.0 0.0 1.0;... 
                       1.0 0.0 0.0;... 
                       0.7 0.0 0.0;... 
                       0.0 0.7 0.0;... 
                       0.0 0.0 0.7;... 
                       0.7 0.7 0.0;... 
                       0.7 0.0 0.7;... 
                       0.0 0.7 0.7]; 
     
    [stats.gauss stats.gaussix] = hist(randn(1, 10000),21); 
End 

 

CLASS STATS –RESET 

function[stats] = classStatsReset(stats) 
    stats.P               = [];           % Population Statistics 
    stats.SA              = [];           % Stay Alive statistics 
    stats.B               = [];           % Birth Statistics 
    stats.D               = [];           % Death Statistics 
    stats.E               = [];           % Entropy Statistics 
    stats.A               = [];           % Age statistics 
    stats.F               = [];           % 1/f Slope Statistics 
end 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


