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Abstract

Emergence versus reduction is one of the oldest debates in philosophical history; yet it has been only

recently, with the rise in computer power, that science has been able to make any study of emergence

at all. This paper aims to briefly review the current work in defining this formidable concept and

attempts to introduce a more formal definition in terms of complexity theory and predictability.

11 INTRODUCTION

The emergence reduction debate began in

around 350BC with the opposing schools of

Aristotle and Democritus. The Aristotelian

philosophers (most notably Plato) objected

vehemently to the mechanistic purposelessness

of atomism saying that it could never produce

the beauty and form of the world; in the words of

Plato we ask, “is the world created or

uncreated?”. This position was, however, most

eloquently stated by Aristotle within the treatise

entitled Metaphysics; he proposed an

emergentist alternative to the philosophy of the

atomists stating that “the whole is greater than

the sum of its parts”.

Despite the continued philosophical debate,

science, is seems, neglected this alternative

notion, driven instead by the progressive powers

of chemistry and physics (the two towers of the

reductionist dogma). As science advanced, it

increasingly began to restate the whole in the

reduced terms of its multifarious parts; water

and earth was broken into atoms and fire and

wind identified to be thermodynamic forces

blindly following Newtonian laws. With

mechanism came predictability and with

predictability came the capacity to harness these

great forces of nature. Industry and technology

feasted on the knowledge brought forth by the

sciences of reductionism and the more we broke

the world apart the more we seemed to

understand it.

However, over the last century this paradigm has

begun to shift (Capra 1996; Davies 2003).

During the 1920s physicists delving the furthest
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depths of the atomic world were dragged away

from the simple realm of Newtonian mechanics.

The quantum world they were exploring was a

place of probability and unpredictability;

crumbling apart the very ground upon which the

fundamental atomists once stood (Schrödinger

1926).

Within biology too, scientists unsatisfied with the

reductionistic answer to the question of life

began to look at a more holistic explanation;

defining living organisms in terms of autopoietic

systems and cognition in terms of information

processing and self-maintenance (Maturana &

Varella 1980).

A new ontology was forming; in which the world

was viewed not in terms of atoms and laws, but

in terms of nested systems; and to study it,

scientists began to construct a new kind of

science (Wolfram 1984).

Aided by the exponential growth of computer

power, scientists began to develop a general

theory of these nested systems (Van Bertalanffy

1969); examining their nonlinear dynamics

(Lorenz 1963; Feigenbaum 1978), their natural

self-organisation (Prigogine 1981; Kauffmann

1993; Lovelock 1979) and their apparent

hyper-structures and hierarchy (Mandelbrot

1977; Kauffman 1993; Baas 1994; Morowitz

2002).

Known now as the study of complex systems,

this burgeoning field is slowly turning the

reductionist worldview on its head. Rather than

trying to describe wholes as collections of parts,

we are now examining collections of parts and

finding strange and unpredictable new wholes.

We are, at long last, beginning the scientific

investigation of emergence.

This paper aims to briefly review the current

work in defining this concept and will attempt to

introduce a new definition in terms of complexity

theory and predictability. We do, however, heed

the warnings of John Holland, in his exhortative

book on the subject; “despite its ubiquity and

importance, emergence is an enigmatic,

recondite topic, more wondered at than analysed

… it is unlikely that a topic so complicated will

submit weakly to concise definition” (Holland

1998).

12 FOLK DEFINITIONS

In attempting a formal definition of such a

difficult subject, it is useful to begin with a more

general folk understanding of it first.

The most widely considered, and intuitively

understood, such notion is Aristotle’s original

observation that the whole (lets call this X) is

greater than the sum of its parts (lets call these

Ys). In this folk definition, Xs are ‘more than just

Ys’ or ‘something over and above Ys’ (van Gulick

2001).

Most researchers appear to share this general

and simplistic notion of emergence; and James

Crutchfield (1994) expands upon it slightly by

saying that “over time, ‘something new’ appears

at scales not directly specified by the equations

of motion”. He notes, however, that, for this

definition to be useful, “one must specify what

the ‘something’ is and how it is ‘new’”.

And herein lies the problem; there is currently no

agreement or even debate regarding what the

‘something’ is or how it is ‘new’.

For some, the distinction between the two is

ambiguous and Van Gulick (2001) makes a

concerted effort to provide clarity by driving a

philosophical wedge between the metaphysical

emergence of properties (the something) and the

epistemological emergence of cognitive

explanation (the newness). However, this

distinction only seems relevant to

thermodynamic emergence (Cariani 1990), and

ignores the emergence of formal structures or

intrinsic computation (Crutchfield 1994). Further

still, it is unclear upon which side of the

ontological boundary we should place some of

the more observationally dependant, or
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subjective examples of emergence such as colour

or temperature.

Such subjectivity in emergent phenomena is a

key issue for many who attempt to define the

something, and is commonly known as the

‘problem of interpretation’ (Forrest 1990).

Crutchfield (1994) shows great concern regarding

the extent to which pattern and structure may lie

purely in the eye of the beholder; “it is the

observer or analyst who lends the teleological

self to processes which otherwise simply organise

according to underlying dynamical constraint”,

and importantly if that observer lacks the

analytical know-how then, “the obvious

consequence is that ‘structure’ goes unseen due

to the observer’s biases”. To tackle the issue he

puts forth the proposition of intrinsic emergence;

briefly described as the capacity for a system to

be able to capitalize on the emergent patterns

that appear. There is no external referrer

(observer) and the emergent pattern lends

additional functionality to the underlying system

itself.

In a similar vain, many other authors attempt to

redefine emergence in terms of the functional

enhancement that the ‘something’ brings to the

system as a whole. For example Forrest’s notion

of computational emergence redefines

emergence in terms of the enhancement of

computational capacity (Forrest 1990); and more

generally, in complex biological systems such as

bee foraging, emergence is often used to

describe the process by which new scales of

adaptive behaviour arise (Seeley 1991). Holland

(1998), however, helps to smooth these

ambiguities a little by highlighting that “the

context in which persistent emergent pattern is

embedded determines its function”.

For others, the emphasis of emergence should be

more heavily placed on the ‘new’ than on the

‘something’. In particular, Capra (2002) defines

emergence as “the creation of novelty”, a view

which appears to be based, at least in part, on

Cariani’s work on combinatorial versus creative

emergence (Cariani 1990; 1997). For Cariani,

“emergence concerns the means by which

novelty arises in the world”; a viewpoint which

slants ones perspective towards the philosophy of
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creativity, and is in contrast to the more general

view of emergence as “Xs being something over

and above Ys”. As such, although interesting and

with a degree of overlap, it is felt that much of

Cariani’s work falls outside the field (Kubik

2003).

For others the emphasis of the ‘new’ is slightly

less extreme. Van Gulick (2001), within his

definition of epistemological emergence,

distinguishes two distinct kinds of novelty which

he calls representational emergence and

predictive emergence. The former states that the

laws and framework of the parts cannot

adequately describe the emergent phenomena.

The latter states that the laws and framework of

the parts cannot adequately predict the existence

of the emergent phenomena.

This view of predictive novelty is also highlighted

by Baas (1997) with his definitions of deducible

emergence and non-deducible (observational)

emergence – wherein an emergent property is

deducible if it can be deduced (predicted) using

the theory, structures, interactions and

observations of the parts.

So too for Ronald, Sipper and Capacarrerre

(2003) who state “emergence consists in the fact

that we cannot describe (predict, expect) the

behaviour of the whole system from the

description of its individual parts”.

Finally, for some, the notion of the ‘something’

and the ‘new’ is simply inadequate. Kubik (2003)

charges all of the current work in the field as

being either too broad or too strict; as being too

informal and too intuitive; as being overly

philosophical; and as lacking an adequate

modelling technique and unified framework. His

desire is to build a formal “Theory of Emergence”,

citing John Holland as his guide, and he wishes to

base it on multi-agent systems and the

mathematics of grammar based systems. These

sentiments are partly shared within this paper,

but from the alternative perspective of

complexity theory.

13 DYNAMICAL PROBABILITY

Complexity theory is the branch of dynamical

systems theory which concentrates its study on

the “interesting” class of behaviours found within

discrete dynamical networks (DDNs) (Wolfram

1984; Langton 1989). The field is growing

steadily within a wealth of observable DDNs;

each with their own set of interesting behaviours

lying somewhere on the overlap of order and

chaos - see figure 1 for Gershenson’s (2004)

classification of DDN space.

The most widely studied and publicised class is

undoubtedly that found by Stanislaw Ulam and

John von Neumann in the 1940s; the prodigious

Cellular Automata (CA).

A CA can be defined as a D-dimensional lattice

with a finite state automaton placed at each site

in the lattice. Each automaton has Q distinct

states and at any given time (t) an automaton

can be said to be in the specific state. Each

automaton calculates its next state from a lookup

table of rules based on the configuration of its

local neighbourhood. The automaton rule table

would simply consist of a rule for each and every

possible configuration within the N

neighbourhood template. Numerically speaking,

therefore, a particular class of CA has |Q||N|

possible rulesets.

The most famous of these is John Conway’s

Game of Life (commonly referred to as ruleset

23/3). Based on von Neumann’s 2-state,
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9-neighbour checkerboard CA, the Game of Life

contains a wondrous array of interesting global

behaviours; including, pertinently, a number of

phenomena which are commonly considered to

be prime examples of emergence. Of these, the

predominant pattern for study is, undoubtedly,

the simple and meritorious glider.

The glider contains and signifies everything which

complexity theory aims to study; and for us to

clearly understand the extent to which it is so

compelling, we must compare it to the more

common sets of behaviours possible in a complex

system; the opposing forces order and chaos.

First, however, a brief review of order and chaos

with respect to predictability and the

mathematics of information theory. Following

Gregory Chaitin’s (1974) lead, let us consider the

following series of binary digits:-

(a) 01010101010101010101

(b) 01101100110111100010

Chaitin promotes (a) as a non-random series due

to its informational compressibility (it can be

reduced to a minimal program which simply

prints 01 over and over again). As such, this

series it also said to be predictable (we are able

to use the compression to accurately predict the

next digits to be 0 and 1).

Step 0 Step 1 Step 2 Step 3 Step 4

Figure 3a: The whole of an ordered CA

Time-step
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Figure 3b: The parts of an ordered CA

The second series (b) is said to be random

because it is not compressible (it cannot be

reduced to a minimal program). It is equally said

to be unpredictable as there is no method (other

than by sheer guesswork and chance) by which

you can accurately predict what the next digits

will be.

Such work concentrates on the randomness of a

sequence, or, to put it into context, on a system

with just one variable changing over time (a

non-complex dynamical system if you will).

However, more recent studies of complex (many

variabled) dynamical systems have shown a very

similar bisection can also be made. Ordered

systems are those whose global behaviour is

predictable and chaotic systems are those whose

behaviour is unpredictable.

To bring these two kindred ideas together,

consider the cross reference outlined below

entitled predictability in dynamical systems

(figure 2).

With reference to this position, one may now

return to the hearth of complexity theory in an

attempt to establish what is unique about the

glider and what relevance all this has on a

definition of emergence.

First, a study of a complex system which displays

ordered behaviour. The ruleset determining this

behaviour is the 23/3 Game of Life ruleset.

Figure 3a illustrates how the state of the CA

changes over time; this is the behaviour of the

“whole”. It is intuitively clear that the system is

predictable from this perspective; it repeatedly
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cycles from a state of 3 vertical squares to 3

horizontal squares and back again.

Figure 3b illustrates the same information over a

longer number of time-steps but this time it

allows each cell (part of the system) to be

considered separately. As can again be clearly

seen every part can be expressed in terms of a

non-random sequence. The highlighted cell 18,

for example, follows the converse of the

non-random sequence previously examined and

said by Chaitin to be compressible

(101010101010… etc).

So, from the perspective of the whole we have a

predictable/ordered system, and from the

perspective of its parts we have a collection of

predictable/non-random sequences.

Step 0 Step 1 Step 2 Step 3 Step 4

Figure 5a: The whole of a glider

Time-step
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Figure 5b: The parts of a glider

An important note at this point is that we are in

this second example considering each cell in

isolation; free from its neighbouring cells and

free from the underlying mechanics driving its

behaviour. Such a measure allows us to clearly

consider “the sum of the behaviour of the parts”

which, according to Kubik (2003) is a crucial and

overlooked aspect to any formal definition of

emergence.

Lets us now compare the above with an example

of chaotic behaviour. The ruleset determining this

behaviour was the arbitrarily chosen 467/24 rule.

As before Figure 4a illustrates how the state of

the whole CA changes over time. It is intuitively

clear that the system is unpredictably chaotic

from this perspective. No obvious pattern of

behaviour exists and the general behaviour

depends entirely on the initial conditions of the

system.

Figure 4b illustrates the same system but in the

terms of its constituent parts. Examining the

behaviour of cell 18 highlights a random

sequence very similar to that examined earlier

(i.e. 10101010011101... etc).

Step 0 Step 1 Step 2 Step 3 Step 4

Figure 4a: The whole of a chaotic CA

Time-step
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Figure 4b: The parts of a chaotic CA

Page 6 of 10



Candidate No: 89879

So, from the perspective of the whole we have an

unpredictable/chaotic system and from the

perspective of the parts we have a collection of

unpredictable/random sequences.

And so finally, let us now take a look at our

glider. Figure 5a illustrates the behaviour from

the perspective of the whole and shows a simple

period-four cycle with a diagonal translation. Like

our first study, this behaviour is predictable; one

is able to accurately and precisely state the exact

future of the whole system. As such, one may

choose to call this behaviour (from the

perspective of the whole) ordered.

However, in examining the behaviour of the

individual parts, we are not presented with the

same predictability as in our first study. In fact,

(although lacking the multifarious noise of our

chaotic example) the behaviour of the parts is

unpredictably random.

So, from the perspective of the whole we have a

predictable/ordered system and from the

perspective of the parts we have a collection of

unpredictable/random sequences.

To clarify this point, consider again that you are

studiously watching just a single cell in an

unknown CA. You have no visibility of any of the

other cells surrounding it; you simply have

knowledge of the behaviour of one single cell. It

provides you with the following sequence:-

(c) 0101010101…

In this instance you rightly predict the next state

to be zero and it turns out that you have been

watching cell 18 in our first example (figure 3b).

You then try the same experiment again with a

different CA which this time provides you with a

different sequence:-

(d) 0000000000…

In this instance you again predict zero to be the

next state, however, you are wrong because you

have been watching cell 1 in our third example

(figure 5b). The behaviour of the individual cells

within a CA containing a glider is unpredictable.

14 COMPLEXITY AND EMERGENCE

One may now collate the observations from the

previous section into a coherent view of the three

classes of behaviour found in complex systems

(figure 6); allowing us to finally begin to

formulate the complexity theoretic definition of

emergence.

First however, let us pause for a moment to

ponder a brief thought experiment; imagine, if

you will, a giant chessboard of 5 x 5 squares.
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Each square is 10 metres wide and surrounded

by a wall 10 metres high. In the centre of each

square, resting on the floor is a light-bulb. Every

2 minutes a siren sounds and the light-bulb in

each room changes state according to a global

rulebook and according to the status of the lights

in the surrounding rooms. (This is, of course, a

giant CA).

Inside each square we place a volunteer whose

job it is to watch the light-bulb. They are unable

to see the light-bulbs in any of the surrounding

squares and are unaware of the rulebook

governing the system. Instead, they simply have

to watch their own light-bulb. We shall call these

volunteers “the parts”.

Finally, we place a volunteer in a specially

constructed observation tower 100 metres above

the chessboard. From this vantage point, the

volunteer is able to see into all of the squares

and is able to see all of the light-bulbs. We shall

call this volunteer “the whole”.

With everyone in place, we program the system

of light-bulbs with a set of ‘ordered’ behaviours

(similar to the one we examined in figure 3) and

leave it running for 3 hours. When the time is up,

we pause it and walk around each of “the parts”

asking them to predict what state they expect

the light-bulb in their square to be when the next

siren sounds. If anyone is able to provide us we

an accurate prediction we give them 1 point. In

this round “the parts” do very well indeed, and

get a combined score of 25 points.

Next, we climb the ladder of the observation

tower and ask “the whole” to perform the same

prediction; giving him a point for every square

that he is able to predict from his higher vantage

point. He too scores very well, gaining 25 points.

For this round then, we declare a tie; and state

that, for ordered behaviour, the whole is equal to

the sum of the parts.

Next, we program the light-bulbs with a set of

‘chaotic’ behaviours and after 3 hours we repeat

our walk around “the parts” asking them again

for the same predictions. This time, however,

none of them are able to safely predict whether

their light-bulb will be on or off and their

combined score of 13 is no better than chance

alone. We climb the tower and ask “the whole”

for his predictions. He too states that he is not

confident and scores himself 12 points.

For this round then, we declare a disappointing

result; and state that, for chaotic behaviour,

neither the whole nor the parts is able to provide

us with any information over and above random

chance.

Finally, we program the light-bulbs with a set of

‘complex’ behaviours. After the 3 hours is up “the

parts” do a little better than last time racking up

a total score of 16 (thanks to the confidence of

some of the volunteers whose light-bulb had

been off for the entire duration of the

experiment). With this we climb the ladder and

ask “the whole” for his prediction. Surprisingly,

he swiftly and confidently provides us with all 25

correct predictions.

For this final round we have a clear winner; and

we state that, for complex behaviours, the whole

is most definitely greater than the sum of the

parts.

15 CLOSING

Emergence, it seems, is the process by which

predictable behaviour arises from a complex

collection of unpredictable parts; and it is exactly

this kind of behaviour which is deemed

interesting by Wolfram (1984) and which is

highlighted by Chris Langton’s region of

complexity. In fact, it now appears that this

complex space is, rather than lying at the

transitional edge between order and chaos,

better considered as a combinatorial overlap of

the two opposing regions; wherein an ordered

whole arises from unordered parts.

In considering what is gained by such

predictability one might conclude that the answer
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is information. For example, during the third trial

of our thought experiment, the whole contained

more information than the parts. From this

observation, one might wish to further conclude

that emergence is the process by which new

information becomes available within a complex

system examined from a wider perspective.

The tentative hope of such an attempt at defining

emergence from the perspective complexity

theory, is to begin the process of framing the

‘something’ and the ‘new’. It is time that we

reduce the philosophical intuition and begin the

construction of a more palpable field of study. In

so doing it is hoped that we can, at last, begin to

open our eyes to this recondite enigma, and start

to turn the wonder into science.
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